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Abstract

COMPUTER-AIDED TRAUMA DECISION MAKING USING MACHINE
LEARNING AND SIGNAL PROCESSING

Soo-Yeon Ji

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2008

Major Director: Kayvan Najarian
Associate Professor, Department of Computer Science

Over the last 20 years, much work has focused on computer-aided clinical decision support
systems due to a rapid increase in the need for management and processing of medical
knowledge. Among all fields of medicine, trauma care has the highest need for proper
information management due to the high prevalence of complex, life-threatening injuries.
In particular, hemorrhage, which is encountered in most traumatic injuries, is a dominant
factor in determining survival in both civilian and military settings. This complication
can be better managed using a more in-depth analysis of patient information. Trauma
physicians must make precise and rapid decisions, while considering a large number of
patient variables and dealing with stressful environments. The ability of a computer-aided

decision making system to rapidly analyze a patient’s condition can enable physicians to

ix

www.manaraa.com




make more accurate decisions and thereby significantly improve the quality of care pro-
vided to patients. The first part of this study is focused on classification of highly complex
databases using a hierarchical method which combines two complementary techniques:
logistic regression and machine learning. This method, hereafter referred to as Classifica-
tion Using Significant Features (CUSF), includes a statistical process to select the most
significant variables from the correlated database. Then a machine learning algorithm is
used to identify the data into classes using only the significant variables. As the main
application addressed by CUSF, a set of computer-assisted rule-based trauma decision
making system are designed. Computer aided decision-making system not only provides
vital assistance for physicians in making fast and accurate decisions, proposed decisions
are supported by transparent reasoning, but also can confirm a physicians’ current knowl-
edge, enabling them to detect complex patterns and information which may reveal new
knowledge not easily visible to the human eyes. The second part of this study proposes an
algorithm based on a set of novel wavelet features to analyze physiological signals, such
as Electrocardiograms (ECGs) that can provide invaluable information typically invisi-
ble to human eyes. These wavelet-based method, hereafter referred to as Signal Analysis
Based on Wavelet-Extracted Features (SABWEF), extracts information that can be used
to detect and analyze complex patterns that other methods such as Fourier cannot deal
with. For instance, SABWEF can evaluate the severity of hemorrhagic shock (HS) from
ECG, while the traditional technique of applying power spectrum density (PSD) and frac-
tal dimension (FD) cannot distinguish between the ECG patterns of patients with HS

(i.e. blood loss), and those of subjects undergoing physical activity. In this study, as the
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main application of SABWEF, ECG is analyzed to distinguish between HS and physical
activity, and show that SABWEF can be used in both civilian and military settings to
detect HS and its extent. This is the first reported use of an ECG analysis method to
classify blood volume loss. SABWEF has the capability to rapidly determine the degree

of volume loss from hemorrhage, providing the chance for more rapid remote triage and

decision making.
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Executive Summary and Contributions

This work targets two types of complex problems: classification of complex/correlated
dataset, and analysis of noisy/complex signals. For the first problem, a novel hierarchical
method is developed for classification of highly complex and correlated dataset. This algo-
rithm includes a statistical selection process in which modified version of logistic regression
is employed to select the most significant variables in the data. Then a machine learning
method is used to classify data into classes using only the identified significant variables.
Extensive simulations on a number of databases indicate clear advantages of the proposed
method over existing methods for a wide variety of applications.

In the second part of this work, a set of novel wavelet-based features, together with
a systematic method to extract them from complex noisy signals, are introduced. These
features are proved to be extremely efficient in distinguishing among signals that are very
similar to each other. In other words, the introduced features can capture very detailed
differences that cannot be detected by traditional signal processing methods such Fourier-
based, Fractal-based, and power spectral density based methods. The capabilities of our
measures are demonstrated in a number of applications. In all of these applications the
novel measures distinguished classes that cannot be separated by any traditional method.

The target application for the developed algorithms is trauma decision making sys-
tems. The urgent need for computer-assisted decision making in medical applications

is a consequence of the rapid development of novel medical measurement technologies,

xii
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fast growth in medical knowledge management, and the need for faster and more accu-
rate decisions. Thus, finding the most relevant variables is critical in developing efficient
computer-assisted decision making systems to assist physicians in patient treatment and
resource allocation.

In this research, improving feature selection/feature extraction methods are focused in
order to identify the most significant variables, considering the relationship of each variable
with the outcomes. This will allow the development of systems that can provide physicians
with the reasoning behind interesting new information/patterns which may have not been
previously observed by experts.

The motivation for developing the decision-making system to analyze traumatic injury
data is due to their prevalence and life-threatening nature of these injuries. The mortality
rate for trauma patients is high, and the injuries themselves are typically very complex.
Also, due to the rapid growth in medical knowledge, physicians may need assistance with
exact reasoning when presented with large volumes of complex information. It is therefore
increasingly important to develop trauma computer-aided decision-making systems that
can improve the quality of patient care.

In this research, two types of algorithms are developed, for two types of medical appli-

cations.

1) In the first study, predictive computer-assisted rule based trauma decision making sys-
tems using a unified computational model that combines statistical regression and

machine learning techniques is developed. It was shown that by selecting only the

xiii
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statistically significant variables, regardless of the specific machine learning method
used in the next step, the overall resulting predictive system is not only more accu-
rate and more reliable but also provides predictions and recommendations that are
transparent and easier for physicians to understand. Besides this novelty in selection
and filtering of variables, in the machine learning step we prove that, despite the
hypotheses made in some previous studies, rule-based systems can equal or exceed
the performance of non-transparent methods such as neural networks and support
vector machines in trauma decision making scenarios, if the models are trained and

tested correctly.

2) In all types of trauma injury, the existence and severity of hemorrhage is a major factor
in determining patient survival. In the second part of this research, novel approach
are proposed to analyze some major physiological signals to detect and evaluate the
severity of a patient’s hemorrhagic shock (HS). The physiological signals used in this
research, such as Electrocardiogram (ECG), can provide invaluable information not
visible to human eyes. Specifically, the severity of hemorrhage is often evaluated
using heart rate variability (HRV) analysis of the ECG. Currently, power spectral
density (PSD) and fractal domain (FD) are the common HRV analysis tools. How-
ever, it has been shown that these traditional methods are unable to distinguish
between central volume loss (the main indicator of HS) and physical activity (such
as typical daily exercise), as they have similar HRV patterns. This is problematic

given the desire to use changes in heart rate to detect the presence of acute volume

Xiv
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loss due to hemorrhage. In this research, a new HRV analysis approach is proposed
based on wavelet transformation to determine blood loss severity. In addition, these
methods can identify the degree of hemorrhage shock. Again, the combined set of
algorithms proposed for this study have the to be used for other biomedical and

non-biomedical signals.

The following sections provide more details on these new computational approaches/methodologies.

Section 1. Computer-Aided Trauma Decision Making using Machine Learn-
ng

None of the existing trauma decision-making algorithms is in widespread use in trauma
centers because: 1) they use non-transparent methods; 2) the performance of these algo-
rithms is typically poor due to the exclusion of relevant attributes and the inclusion of
some that are irrelevant to the task at hand. Inclusion of irrelevant variables results in
rules that are too complicated to be clinically meaningful.

Predictive computer-assisted rule based decision making system is developed by com-
bining two complementary techniques: logistic regression and different families of machine
learning methods. Logistic regression is useful in describing relationships among multiple
independent variables and a specific outcome. Furthermore, rule-based methods in ma-
chine learning are easy to understand and interpret while also being capable of dealing
with categorical variables and missing values. Figure A shows the high-level schematic di-
agram of the proposed system and it contains four main tasks: pre-processing, extraction

of significant variables, rule extraction, and rule testing and evaluation.

XV
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Figure A: Block diagram for entire approach.

It is considered that appropriate feature selection may have a critical impact on pre-
diction accuracy. Therefore, logistic regression is used for selecting significant features
and the proposed method (in Chapter 5) is evaluated by comparing the results of machine
learning classification using all available variables and only significant variables. In order
to examine the significance of the individual variables, logistic regression performs the like-
lihood ratio significance test. In logistic regression, the stepwise model selection method is
commonly used to find the best subset of variables to predict the outcomes, considering all
possible combinations. As part of the process, any single predictor variable may be added
or deleted. There are major issues with stepwise model selection for medical application.
Although the method is designed to find important variables it does not guarantee that
the most significant variables are selected, due to the repetition of insertion and deletion.
The proposed approach has improved the performance over the stepwise method (Chapter
4 and Chapter 5).

For rule generation, two decision tree algorithms, CART [22] and C4.5 [120, 119, 118],
are used to generate the rules. These are then evaluated using 10-fold cross validation.
A set of reliable rules is created after rule filtering and assessment by physicians of the
clinical merit of the rules. The resulting transparent rule set provides physicians with the
exact reasoning behind the system’s recommendations and predictions. This research also

proves that for a wide range of trauma applications, rule-based methods such as CART and

Xvi
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C4.5 can be trained in such a way that the accuracy, sensitivity, and specificity is either
competitive with or even better than non-transparent methods such as support vector
machines and AdaBoost. Those machine learning algorithms are described in Chapter
3. This is a finding that, contrary to some reports in the literature, encourages the use
of rule-based systems for many medical and non-medical applications. It is hypothesized
that one factor in making rule-based systems more reliable and accurate is the use of a
“significant feature selection” step as a pre-processing stage, as proposed by this research.

The proposed hierarchical model, CUSF, can not only improve feature selection in order
to identify the most significant variables, but also provide physicians with the reasoning

behind interesting new information / patterns that may have not been previously observed.

Section 2. Heart Rate Variability (HRV) Analysis Using Advanced Signal
Processing

A new method to analyze HRV is proposed, based on wavelet transformation of Elec-
trocardiogram (ECG) data. The capability of the algorithm to distinguish between ECG
for subjects undergoing lower body negative pressure (LBNP) that simulates the loss hem-
orrhage in human subjects, and subjects doing physical activity is performed. Figure B

presents a schematic diagram of the overall method and its comparison with the traditional

HRV analysis technique.

xvii
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Figure B: Detailed schematic diagram of entire process - multiple tasks are performed on

ECG data.

For any HRV analysis, the QRS complex (see Fig 7) must be detected first as it is the
most significant waveform in an ECG signal, and the HRV is generally extracted from the
ECG recording by detecting RR intervals (Section 5 in Chapter 6). Figure C presents the

schematic diagram of the process of analyzing ECG and extracting RR intervals.
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Figure C: Detailed schematic diagram of ECG analysis.

In order to detect the QRS complex, modified version of the Pan-Tompkins algorithm
[109] is used. Because subject movement (including minor muscular activity) can cause
high frequency noise components or other types of electromagnetic interface, a modified
Pan-Tompkins algorithm is used by adding a histogram process step in which the charac-
teristics of the signal’s amplitude distribution are analyzed and used for extra filtering of
the signal.

Once the HRV is extracted based on the RR interval, the traditional approach (power
spectral density and fractal dimension) is applied and compared with the new approach
(wavelet transformation). The results with the state-of-the-art in the field are compared
and show the advantages of the new method over the existing methods. The traditional
method of HRV analysis via power spectral density (PSD) uses an average power with
certain ranges of frequencies, and applies the Fast Fourier Transformation (FFT) for cal-
culations. However, FFT cannot reliably be used to process non-stationary signals such

as ECG. This renders the traditional HRV analysis method incapable of distinguishing

Xix
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between the ECG patterns in HS (or LBNP) and physical activity.

In order to overcome this problem, a novel approach, called Signal Analysis Based on
Wavelet-Extracted Features (SABWEF), is designed to deal with non-stationary signals.
Since wavelet transformation calculates the similarity between the input signal and a
mother wavelet, and the Daubecies families of wavelets have the most similar shape to the
QRS complex, Daubecies wavelets for ECG analysis are used. The results using Daubecies
4 and Daubecies 32 are compared. Since the results show no significant differences between
the two wavelets, Daubecies 4 is used for the full study.

SABWF provides a specialized method of QRS detection, filtering, wavelet decom-
position, and feature extraction for ECG analysis. All these techniques as well as their
combination can be used to analyze other biomedical and non-biomedical signals.

Unlike traditional HRV analysis, i.e. SABWEF, can differentiate between cases of
physical activity and hemorrhage shock. The method may also be useful in quickly deter-
mining the degree of volume loss due to hemorrhage. This would prove an invaluable tool

in rapid patient triage and decision making.

XX
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CHAPTER 1 Introduction

1.1 Traumatic Injury

Many Americans experience minor and major accidents in their daily lives, some of which
are serious injuries that can result in death or permanent disability; of these, traumatic
injuries are the most prevalent. Patients who survive a head injury may suffer serious
consequences, including lifelong paralysis and severe disability [108, 148]. According to the
Federal Centers for Disease Control and Prevention (CDC) in 2004, 1.4 million Americans
sustain a traumatic brain injury (TBI) each year, and 50,000 of those individuals die as a
result of these injuries [26]. Since mild TBI does not affect life expectancy, young people
potentially face several decades of disability. Specifically, it is estimated that each year
approximately 100,000 children are permanently disabled. TBI accounts for about 29,000
of these cases, and a significant percentage result in neurological impairment [27, 49, 11,
131].

A potentially fatal consequence of traumatic injury is hemorrhagic shock (HS). This is
particularly common on the battlefield, where it accounts for nearly 50% of trauma deaths,
but is also encountered in civilian life, where it accounts for 39% of trauma deaths. A
study of the Israeli military found that in 96% (351 out of 337) of the patients, death due
to blood loss occurred within the first four hours after injury. The major causes of the

deaths in this group were hemorrhage (50%) and neurological trauma (36%); the rest were
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due to severe multiple injuries [19, 134, 158]. The short period between injury and death
and the high rate of complications are both associated with a lack of appropriate medical

attention and limited evacuation facilities in the field [8, 47].

1.2 Motivation Behind Use of Medical Decision Making Systems

Due of the rapid growth of medical information and knowledge available at the time of
decision making, physicians have become more reliant on assistance from other experts in
cases outside of their own area of expertise. Furthermore, physicians who first diagnose
a patient must choose from a variety of expensive medical tests to help ensure correct
diagnosis and optimal therapeutic management. While these tests provide invaluable in-
formation, decision making based on this continuously growing collection of information
is a challenging task. Early and effective trauma patient control can improve the chance
of survival more than any other measure; however, achieving this is far from simple. In
1996 and 2000 (updated in 2003), the Brain Trauma Foundation published guidelines for
the management of severe TBI [54], which were accepted by the American Association of
Neurosurgeons and endorsed by the World Health Organization Committee in Neurotrau-
matology. These guidelines provide valid criteria to identify high-risk patients, with the
aim of reducing inappropriate care, controlling geographic variations in practice patterns,
and maximizing health care resources. However, the implemetation of practice guidelines
was slow due to deficiencies in physician training [101].

In developed countries, the rate of growth of health care expenditures has exceeded

that of growth in income for a considerable period of time. For example, in the United

www.manaraa.com




States health care expenditures as a share of gross domestic product (GDP) have tripled
since 1950, from 5% then to 15% today [46, 66]. This increase in spending has far exceeded
the supply for healthcare revenue and services, and interest in medical decision support
systems has risen accordingly due to the need for cost-control and improvement in quality
of care.

In a recent study of error in medicine [24], a database was constructed from the 1992
American Hospital Association with 1,116 hospitals participating. The study found 17,338
medication errors that adversely affected patient outcome; furthermore, medication errors
occurred in 5.07% of the patients admitted each year, and on average each hospital experi-
enced a medication error every 22.7 hours. Leape [87] found that the average intensive care
unit is subject to an even higher error rate - almost two errors per day in each unit- that
can have serious and possibly fatal consequences. This illustrates the clear importance of

computerized decision making systems as a research issue.

1.3 Significance of Study

The clinical significance of a computer-aided decision making system lies in its ability to im-
prove diagnosis and care by helping physicians make more accurate decisions in a stressful
environment, and to provide the reasoning behind all recommendations and predictions.
Moreover, by examining the decision-making process using a qualitative methodology,
new knowledge can be gained, particularly in the planning of long-term care. An accurate
decision-making system may also be of use in rural and remote areas where physicians

with extensive trauma experience may not be available, and may be effective in classroom
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education of medical students.
In the computer science field, the proposed methods, classification using significant

features (CUSF), provide the following novelties and contributions:

1. In the first part of the dissertation, a hierarchical method, CUSF, for classification
of highly complex and correlated dataset is presented. This method uses statistical
filtering where a modified version of logistic regression is employed to select the most
significant variables, and then a machine learning method is used to classify the
data into functional classes using only the identified significant variables. Extensive
simulations with both medical and non-medical databases prove the superiority of
the proposed method over existing methods over a wide variety of applications. We
also show that the application of the proposed method, along with rule extraction
machine learning methods such as CART, on trauma databases provides rules that
can change the way medical decision-making systems are perceived and used by

medical community.

2. The second part of the dissertation introduces a set of novel wavelet-based features,
signal analysis based on wavelet-extracted features (SABWEF), and a systematic
method to extract them from complex noisy signals. These features are proved to be
extremely efficient in distinguishing among functional classes that are very similar
to each other in signal level, i. e. the features can capture very detailed differences
that cannot be detected by traditional signal processing methods such Fourier-based,
Fractal-based, and power spectral density based methods. The capabilities of the

wavelet-based features are tested, verified, and demonstrated against a number of
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applications, in all of which these features distinguished classes that cannot be sepa-
rated by any traditional method. These applications include the heart rate variability
(HRV) analysis that has tremendous impact on patient care. Thus, the proposed
wavelet based features may useful to extract hidden knowledge from highly noisy

and complex signals as well as HRV signal.

1.4 Aims of Study

The main aim of this study is to develop a computer-aided trauma decision making system
that integrates all relevant knowledge from medical records, and ultimately generates
reliable rules which can support clinicians in applying all information to provide better

care to patients. The specific aims of this research are described below:

1. Apply machine learning methods, specifically decision tree algorithms, to extract
rules directly from datasets and provide physicians with the reasoning behind them.
Show that transparent rule-based systems perform as well as other methods (such

as neural networks).

2. Show that developed hierarchial method is well performed on medical dataset as well

as non-medical dataset.

3. Analyze heart rate variability (HRV) using wavelet transformation to predict severity
of hemorrhage shock (HS). Use advanced signal processing to differentiate between
cases of blood loss and physical activity, which present similar HRV patterns in test

subjects.

4. Define new features based on discrete wavelet transformation (DWT) of ECG that
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can be used to estimate blood loss severity. The features will be defined based on the
energy of detail coefficients of Daubecies DWT. Also, the introduced novel features

are tested using gait aging signal for further validation.

5. Apply machine learning algorithms to the extracted informative features to predict
the severity of blood loss. Statistical analysis is used to validate the extracted fea-

tures.

The remaining chapters of this thesis are organized as follows. Chapter 2 describes ex-
isting work and the benefits and limitations of comparable medical diagnosis techniques.
Chapter 3 explains the chosen approaches and methodologies, including the motivation
behind their use as well as their significance. Chapter 4 presents application results in
predicting patient survival (alive/dead), exact outcome (rehab/home), and pelvic injury
severity. In Chapter 5, testing and validation results using non-medical datasets is pre-
sented. Another specific approach using signal processing methods for heart rate vari-
ability (HRV) analysis is given in Chapter 6. In Chapter 7, the wavelet method features,
SABWEEF, are tested to gait aging dataset with two conditions (healthy and Parkinson’s
disease) in order to validate the applicability of our approach. The final chapter presents

the conclusions and discussion of this study as well as describing future work and possible

enhancements.
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CHAPTER 2 Related work

This chapter describes previous work in developing computer-aided decision-making
systems. First, the motivation and background information about such systems are de-
scribed. Next, machine learning algorithms and their significance in this field are pre-
sented. Finally, the benefits and limitations of logistic regression, which is used frequently

in analyzing medical data, and decision trees algorithms are described.

2.1 Existing Computer-Aided Decision Making Systems

Several computer-assisted systems exist for decision-making in trauma medicine. For
instance, HELP, a hospital information system, has been used at Latter-Day Saints (LDS)
Hospital since 1967. Based on an evaluation report of the system [59], HELP has been used
by clinical staff because its computerized clinical decision-support provides improvements
in patient care. However, the system suffers from several shortcomings: it uses limited
patient information, typing information into the system takes time, and the user must wait
a significant time for the results. The last disadvantage, i.e. delay, is a major reason why
HELP and other decision support systems are not in widespread use [157]. Furthermore,
the HELP system is not integrated with the electronic medical records, and the data
storage requirements are substantial.

The majority of medical decision-making systems perform a statistical survey of similar

cases in trauma database with patient demographic information [53, 65]. As such, they may
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not be sufficiently accurate and/or specific for practical implementation. Another issue
is the use of artificial neural networks in medical decision-making systems. Even though
neural networks have good performance, due to the ‘black box’ nature of neural networks,
the knowledge stored in the trained networks is not transparent and the reasoning behind
the predictions and recommended decisions is obscured [93, 75].

Bayesian statistical technique is also used by calculating the prior probability of a
disease and conditional probabilities of its symptoms. It shows fairly good performance,
but has some limitations. Specifically, the assumption of conditional independency of at-
tributes and mutual exclusiveness may not be satisfied in medicine, as overlapping disease
categories are common in the real world. Another critical issue is that this method requires
a large database to accurately determine all conditional probabilities [121, 135].

As an example of a specific application, studies have been performed to develop an
easy and simple predictive model for survival of TBI patients. Signorini [137] presents
a simple model that predicts patient survival using age, Glasgow Coma Score (GCS),
Injury Severity Score (ISS), pupil reactivity, and the presence of hematoma on CT scans.
Although the model is efficient in usage and well-designed, the accuracy and reliability of
its rules may be limited due to the small number of variables used.

In general, computer-aided systems have the potential to significantly improve trauma
decision making and resource allocation, and it is reported that since trauma injuries
generally have specific causes with established methods of treatment, fatal complications
and long-term disabilities can be reduced by making less subjective and more accurate
decisions in trauma units [108]. In addition, it has been suggested that the cost of trauma

care may be significantly reduced by an inclusive trauma system with an emphasis on
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computer-aided resource utilization and decision-making [10].

Current guidelines for trauma care in the battlefield also may be significantly im-
proved by continuously observing the patients and their biomedical signals. This can aid
the early detection of severe blood loss. Therefore, the most important factors in field
care of trauma patients are appropriate training of the medical personnel and sufficient
preparation for environmental conditions [44, 83]. Also, early and effective hemorrhage
control may improve the chance of survival more than any other measure.

However, even though medical protocols have been developed for the successful man-
agement of trauma patients, currently there is no widely used computer-aided system that
integrates and processes patient information, compares the current cases with those pre-
viously observed, and evaluates the severity of the case to enable faster and more reliable
decision making. Therefore all the issues mentioned above should be addressed.

In summary, there are three main reasons why no existing decision-making system is

in widespread use in trauma centers:

1) The use of non-transparent methods, such as neural networks.

2) The lack of a comprehensive database integrating all relevant available patient infor-

madtion.

3) Poor performance due to the exclusion of relevant attributes and the inclusion of those

irrelevant to the task in hand, resulting in rules that are too complicated to be

clinically meaningful.
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Figure 1: Total number of published papers within two year periods from 1995 to 2008 in

PubMed, CiteSeer, and Google Scholar. The charts show how many papers were published
related to the analysis of medical data 1(a) and trauma injury data 1(b).

2.2 Benefits and Limitations of Logistic Regression and Decision Tree Algo-
rithms

Over the past 20 years, many comparative studies between decision trees and logistic
regression (LR) have been performed [92]. Generally, the Classification and Regression
Trees (CART) algorithm is compared with LR. Figure 1(a) shows the total number of
published papers related to the analysis of medical data, using several algorithms such as
CART, C4.5, and LR. Figure 1(b) displays the same information relating specifically to
traumatic injury. It is clear that the rate of increase in the use of logistic regression has
exceeded that of CART and C4.5.

William [92] compares one of the decision tree algorithms, Iterative Dichotomiser 3
(ID3) algorithm, to logistic regression (LR) using a database of 5,773 cases. His study

found that LR outperforms ID3. However, LR analysis is very difficult to use in clinical
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applications, particularly when the outcome variable has more than two values. Further-
more, Kuhnert [84] emphasizes that non-parametric methods such as CART can provide
more informative variables than LR. His study also states that CART is more useful in
the medical field where access to “rule-like” models for decision making is extremely im-
portant [91]. However, many previous studies [92, 112, 151, 145, 127, 62] have compared
the performance between LR and decision trees, and the results suggest that there is no
completely preferable method; the result of comparison depends upon the chosen applica-
tion.

Although some studies have found that LR outperforms CART, note that there are
certain conditions on these comparisons. For instance, LR performs better for smaller
datasets and it also provides a concise summary of the relationships between the out-
comes and the predictors, which decision trees are unable to do. However, decision trees
are easy to understand and the position of a predictor variable at the root shows its dom-
inance compared with other variables. In addition, CART is likely to be more practical in
a clinical setting due to its easy interpretation [92, 151], and is useful in decision making
for long-term patient care [117]. Therefore, the interdependent use of both techniques may

be a promising approach.

2.3 Significance of the Machine Learning Approach

Machine Learning (ML) [21, 10, 11, 102, 79] is an Artificial Intelligence (AI) technology
that has been employed in a variety of statistical, probabilistic and optimization tools to

automate complex decision making and problem solving tasks. Many statistical methods
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are designed based on multivariate regression or correlation analysis. These approaches,
although powerful, assume that the variables are independent and that the data can be
modeled using linear combinations of these variables. When the relationships are non-
linear and the variables are not independent, these methods cannot be applied. Since
many biological systems are fundamentally nonlinear and their parameters conditionally
dependent, machine learning algorithms are often more appropriate than statistical meth-
ods [138, 139].

There are several reasons why machine learning is popular for medical applications:

1) It is possible to build a model from the data which may help the physician, at the
first examination of the patient, to decide the severity of the injury or disease, and
whether the patient should be admitted to the hospital or could be treated as an

outpatient.

2) It is possible to extract hidden relationships and correlations among the data.

3) Environments change over time. Systems that can adapt to a changing environment

would reduce the need for constant redesign.

4) Missing values are a common problem in medical applications, and some machine

learning algorithms are able to deal with them [90].

Note, however, that the success of machine learning is not always guaranteed. If
the dataset is of poor quality, the results may follow suit. A minimum requirement for

any machine learning technique is a sufficiently large dataset that can be partitioned
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into disjoint training and test sets or subjected to some reasonable form of n-fold cross-
validation. Machine learning algorithms that are commonly used in the medical field
include support vector machines (SVM) and decision tree algorithms such as Classification

and Regression Trees (CART) and C4.5. in Chapter 3, These methods are explained in

detail.
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CHAPTER 3 Classification Using Significant Features
(CUSF)

This chapter introduces a classification method for highly complex datasets using a
hierarchical approach that combines two complementary techniques; logistic regression and
machine learning. This method is referred to as Classification Using Significant Features
(CUSF). The method incorporates only the most significant variables selected from the
potentially correlated input data and uses machine learning algorithms to classify data
using only the significant variables.

The rest of this chapter is organized as follows. Section 3.1 introduces the proposed
approach. A detailed description of the methods is presented in Section 3.2, including four

machine learning algorithms.

3.1 Introduction

Decision tree algorithms, specifically CART and C4.5, are used for rule generation. CART
and C4.5 deal effectively with missing values and categorical variables, leading to their
widespread use in medical informatics. Kononenko [81] compares some techniques such
as Bayes’ theorem, neural networks, and decision trees by considering performance, trans-
parency, explanation of reasoning, dealing with missing values, and reliable prediction with
small dataset. Note that decision tree algorithms may better satisfy those characteristic

of medical diagnosis. However, despite the relatively successful performance of these algo-

14

www.manaraa.com




15

rithms in medical applications, they have had limited success in separating and identifying
important variables in applications where there are a large number of available attributes.
This suggests that combining machine learning with a statistical method to identify the
most informative variables can increase our understanding of the patterns in medical data
and thus help generate more reliable rules.

Therefore, the use of logistic regression, which provides knowledge of the relationships
among the multiple independent variables and the response variable, is considered and
therefore it is useful in finding statistically significant variables to model tasks with binary
outcomes. Creating rules using all available variables can lead to the inclusion of less rele-
vant or reliable attributes, which can then result in random correlations and the generation
of rules which are clinically meaningless. Retaining the less informative variables and/or
including highly correlated attributes may also increase the complexity of the rules and
make them less suitable for clinical applications. Appropriate feature selection therefore
has a significant impact on the accuracy of prediction.

A rule-based computer aided system is proposed to predict the survival (alive or dead),
exact outcome (home or rehabilitation), and severity (measured as the number of days
stayed at ICU) using traumatic injury dataset. The final rule-based decision making sys-
tem can provide the reasoning behind its recommendations, and incorporate information
from future cases.

The generated rules are also tested against support vector machine (SVM), AdaBoost,
and stand alone logistic regression. Though these methods do not generate rules, they are
tested in the interest of performance comparison. The intention is to examine whether

there are rule-based systems that can compete with or beat non-transparent machine
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learning methods in terms of accuracy and performance. Testing other algorithms also
validates the accuracy and stability of the rule-based system. Then quantitative measures
of the statistical reliability and the accuracy of the resulting predictions and recommen-

dations are tested.

3.2 DMethod

In this section, CUSF methodology, which combines logistic regression and machine learn-
ing algorithms, is explained to generate reliable rule based systems. Figure 2 presents a
block diagram of the proposed approach. It consists of four steps: pre-processing, sig-
nificant variable selection, rule generation, and rule testing and validation. Each step is

designed to support creation of the most reliable rules.

Significant Variable
Selaction

Rule Testing &

—*| RuleGeneration | ——>| & validation

Pre-Processing | —»

Figure 2: Block diagram for entire approach.

3.2.1 Pre-Processing

In general, medical datasets contain continuous variables and nominal (categorical) vari-
ables. Figure 3 explains the pre-processing procedure in more detail.

As part of the pre-processing step, every nominal variable is replaced with several
dichotomous variables. For example, there are seven types of complication, and each type

is treated as an individual variable having two levels (Yes/No).
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Dichotomous
Variables (Yes/No)
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Variables Continuous
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P cel '
re-processing )
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| Myocardial Infarction

Pre-existing Disease

|
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|

| Insulin Dependent

Chronic Alcohol Abusel

Figure 3: Diagram of pre-processing procedures.

3.2.2  Significant Variable Ezxtraction

Logistic regression (LR) is used to extract significant variables. The logistic function is

used to calculate the expected probability of a dichotomy as follows:

1
1+ e~ (Bot+bi1 X1+B82X2+...) (1)

m=pr(Y =1|X) =

where X; are variables with numeric values, Y is the outcome (dichotomous; 0/1, e.g.
Alive/Dead), and the [’s are the regression coefficients that quantify the contributions of
the numeric variables to the overall probability [64]. Logistic regression provides knowl-
edge of the relationships and strengths among the multiple independent variables and the

response variables. It does not assume any distribution on the independent variables; they
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do not have to be normally distributed, linearly related or of equal variance within each
group [72, 152]. However, logistic regression does require a linear relationship between
the log-odds of outcomes and predictors. The linearity assumption has been checked by
categorizing the predictors into a number of categories with equal intervals, then using
the Hosmer-Lemeshow (H-L) goodness-of-fit test under the hypothesis that the model set
is good. For our dataset, the H-L test, performed using the Statistical Analysis Software
(SAS), resulted in a non-significant p-value, indicating that the linearity assumption is
valid.

To test the significance of the individual model parameter, logistic regression uses
likelihood testing. The likelihood ratio test itself does not tell if any particular independent
variables are more important than others. However, the difference between the full model
and a nested reduced model which drops one of the independent variables can be analyzed.
The difference in -2log-likelihood (-2LL) using maximum likelihood estimation is compared

for the full model (L1) and the reduced model (LO):
Lo
—2log( ) = —2[log(Lo) — log(L1)] = —2(Lo — L1) (2)

A non-significant difference indicates no effect on performance of the model, hence we can
justify dropping the given variable. For this study, only the significant variables (p-value
<=.05) are selected. SAS is used to calculate the significance of individual attributes.
Note that stepwise model selection is also available to discover the significance of vari-
ables. In the study of statistical regression, the stepwise method is commonly used to find
the best subset of variables for outcome prediction, considering all possible combinations

of variables. However, the stepwise approach may not guarantee that the most significant
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variables are selected due to the repetition of insertion and deletion. For example, age
may not be selected as an important variable [144, 150]; however, physicians may believe
that patient age is very important in deciding treatment.

The fact that appropriate feature selection may have a critical impact on prediction
accuracy is postulated. Thus, the results generated using all available variables and those

generated using only significant variables are compared.

3.2.83 Rule Generation

Two decision tree algorithms, CART and C4.5, are used to generate the rules using only
significant variables. SVM, AdaBoost, and logistic regression are also tested in the interest

of performance comparison. Figure 4 describes the rule generation procedure in more

detail.
‘N cross-validation, N=10
[Dataset| [ 1]2|3]4]5[6[7]8]o9]t0]
[Dataset| [ 1]2]3]4]5[6[7]8[8]10]
[Dataset] | 1]2]3[4]5]6[7]8]9]10]
vt | | el (EELGTET | | ome | | o | | || s
st | (| (E e s[RI TTi] || o | T i | o]
[Dataset| [ 1]2|3]4]5[6[7]8]9]10]
[Dataset| [ 1]2|3]a]5[6[7]8]9]t0] o
[Dataset| [ 1]2|3]4]5[6[7]8]9]t0] s
[Dataset| [ 1] 2| 3[4 |5]6|7]8]9]10]
[Dataset| [1]2|3]4|5]6|7]8]9]10]
DTrainingm DTﬁu.et

Figure 4: Reliable rule generation process.

Ten-fold cross validation is performed to measure the quality and scalability of the

rules. This involves partitioning the data into ten subsets and testing whether the subsets

Ol LAC U Zyl_ilsl
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have a similar outcome distribution. The datasets are divided into N mutually exclusive
subsets, and at each step one is used as the validation set and the other N-1 form the
training set (in Figure 4, N=10). This is repeated N times, so each of the subsets is
used as the validation set exactly once. The results are then averaged to generate a final
estimate. Repeating the analysis multiple times has a considerable computational cost,
but the advantage is that it does not matter how the data set is partitioned; every data
value will be in a testing set once, and in a training set nine times. The accuracy when
using all available variables and using only the significant variables is compared with the

machine learning algorithms using 10-fold cross validation.

3.2.4 Rule Testing & Rule Validation

Once rules are generated, each individual rule is tested to measure individual rule accuracy.
Then, all rules are evaluated by physicians. Consequently, only rules with both high
accuracy and a sufficiently large number of supporting examples are used to form the rule
base. The filtered rules therefore both confirm to the physicians’ existing knowledge and
enable them to analyze new interesting patterns that may reveal new facts. The existing
knowledge may therefore be improved.

The next step is to measure rule sensitivity and specificity. Let FP, TP, FN, and
TN be the number of false positives, true positives, false negatives and true negatives,

respectively. The following measures are calculated:

TP
e TN
Speci ficity = FPETN) (4)
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(TP +TN) .
(TP +TN + FP + FN) 5)

Accuracy

Non-medical dataset is also tested to validate this feature selection approach in Chapter

3.2.5 Machine Learning Algorithms

In this section two decision tree algorithms,CART and C4.5, are described. Also, two
other machine learning algorithms, AdaBoost and SVM, are explained.

Cy.5

C4.5 [120, 119, 118] extends Quinlan’s basic ID3 decision tree algorithm [118]. It is more
successful in avoiding overfitting, is able to handle continuous variables, and is more com-
putationally efficient. The original ID3 algorithm calculates information gain when choos-

ing attributes:

Info(S) = -3 " plks, S) - logs plks, S) (6)

i=1

where p(k;, S) is the relative frequency of examples in S that belong to class k;.
However, ID3 is biased when an attribute has many values. C4.5 uses gain ratio to
select attributes. Gain ratio is a modification of the information gain that reduces bias,

calculated as:

Info(S)

GainRatio(S) = :
_\n p(’|c§|S)l0-g2 p(

5 @
[S]

i=1

where | S| is the size of S.
To generate rules, C4.5 uses a divide-and-conquer algorithm to split training data into

disjoint regions of the variable space, according to pre-assigned target labels [128]. At
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each step, C4.5 splits on the best attribute according to the gain criterion. This criterion
is based on entropy, i.e. the randomness of the class distribution in the dataset. The
criterion is the greatest difference in entropy of the class probability distribution of the
current subset S and the subsets generated by the split.

The best split is the one that most reduces this value. The output of the algorithm is

a decision tree, which can be easily represented as a set of symbolic IF-THEN rules.
Classification and Regression Tree (CART)

CART, designed by L. Breiman [22], applies information-theoretic concepts to create a
decision tree. This allows for the capture of rather complex patterns in data, and their
expression in the form of transparent grammatical rules [91]. CART’s nonlinear extensions
are widely used in data mining and machine learning due to the algorithm’s efficiency in
dealing with multiple data types [57] and missing data. For missing values, CART simply
uses a substitution value, having the most similar split with them [22]. In addition, CART
supports an exhaustive search of all variables and split values to find the optimal splitting

rules for each node. CART uses the Gini index in order to choose attributes:

n

Gini(S) =1-> p? (8)
i=1

where p; is the relative frequency of class ¢ in S. After splitting S into two subsets 51
and So with sizes My and Ms, the Gini index of the split data is defined as:
M,

GiniSplit(S) = —-Gini(S1) +

_ M,
5]

where |S| is the size of S. Thus, the smallest Gini split is chosen as the split node.
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The splitting stops at the pure node containing the fewest examples [60].
Adaptive Boost (AdaBoost)

AdaBoost, introduced by Freund and Schapire [55], is an algorithm that constructs a
robust classifier as a linear combination of weak classifiers. Adaboost repeatedly calls a
given weak learning algorithm in a set of rounds ¢t = 1,...,T. A distribution of weights is
maintained over the training set, such that D;(k) is the distribution’s weight for training
example k on round t. The aim of weak learning is to find a good weak hypothesis
hy : X — {—1,+41} for the distribution D;, where goodness is measured by the error of
the hypothesis with respect to D;. Then Dy is updated such that incorrectly classified
examples have their weights increased, it forces the weak classifier to concentrate on the
more difficult training examples. Correspondingly, correctly classified examples are given
less weight. Adaboost selects some parameter a; to denote the importance of hy, and
after all rounds are complete, the final hypothesis H is a weighted majority vote of all
T weak hypotheses. It has been shown that, as with other boosting algorithms, if each
weak hypothesis is at least slightly better than random, then the training error falls at an
exponential rate. However, Adaboost is also able to adapt to the error rates of individual
weak hypotheses, so each subsequent classifier is adjusted in favor of examples mislabelled

by previous classifiers [52].

Support Vector Machine (SVM)

SVMs [154] are supervised learning methods used primarily for classification. An SVM
treats its input data as two sets of vectors in n-dimensional space: positive and negative

examples. In this space, it constructs an optimal hyperplane that preserves the maximum
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distance between the two sets [143]. Since SVM is able to handle large feature spaces it
has been used successfully to solve many real world problems such as text categorization,
image classification, protein analysis, cancer data classification, and hand-writing recog-
nition [58]. Consider a set of N labelled training examples D = (x1,y1), ..., (Tn, yn) with
y; € {+1,—1} and z; € R", where n is the dimensionality of the input. Let ¢ : R" — F
be the mapping function from the input space to the feature space. If the two classes
are linearly separable, the SVM algorithm finds a hyperplane (w,b) that maximizes the
margin

7 = min{y; <w,é(zi) > —b} (10)

where b is a real number (bias term) and w and ¢ have the same dimensionality. For an

unknown input vector x;, classification means finding:

f@j) = sgn(y: < w, p(xi) > —b) (11)

It can be shown that this minimum occurs when w = >, a;y;¢(x;), where «; is a posi-
tive real number that represents the strength of training point x; in the final classification
decision. The subset of points where «; is non-zero consists of the points closest to the
hyperplane, and these are the support vectors. Since SVM is able to handle large feature

spaces, it is frequently used in many real world problems, even though it is computationally

expensive [58].
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CHAPTER 4 Application of Computer-Aided

Decision-Making System to Traumatic Injury Data

This chapter presents the results of predicting survival (alive/dead), exact outcome
(home/rehab), and ICU (Intensive care unit) days via rule generation. Results indicate
that the rule-based system can help physicians to make accurate decisions and explain
the reasoning behind them; this is expected to enhance patient care, and help derive new
knowledge from complex data patterns.

The chapter is organized as follows. Rules for predicting outcomes are generated using
three different trauma datasets. In Section 4.1 describes the dataset and examines rules
for survival and exact outcome. Section 4.2 focuses on predicting the number of days that
a trauma patient transported to hospital via helicopter will spend in the intensive care
unit (ICU). The last section follows prediction of exact patient outcome (home/rehab) via
classification of pelvic injuries, which is a novel clinical use of data. The importance of

filtering in the selection of significant variables is also addressed in this section.

4.1 Rules for Prediction of Survival and Exact Outcome

In this section, several important variables are introduced. The significance of compli-
cations and pre-existing disease in predicting the outcomes by comparing two different
datasets is explained. The performance comparisons between machine learning algorithms

are also presented, plus conclusion and discussion of the findings.
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4.1.1 Description of Dataset

Two different datasets are used in the study: on-site and off-site. The on-site dataset
collected contains data captured at the site of the accident; the off-site dataset contains
data at the hospital after the patient is admitted. The on-site and off-site datasets are used
to predict patient survival (dead/alive) and final outcome (home/rehab). The datasets are
provided by the Carolinas Healthcare System (CHS) and the National Trauma Data Bank
(NTDB).

On-site dataset: When making decisions based on the variables available at the accident
scene, one has to consider the unavailability of important factors such as pre-existing
conditions (comorbidities). Decisions must therefore be made without knowledge of these
factors. Some physiological measurements are also excluded because they are only collected
after arrival at the hospital. Table 1 presents the variables collected for this dataset, which

consist of four categorical and six numerical attributes.

Table 1: On-site dataset collected at the site of accident (* indicates the categorical

variables).
Variable Possible Values
Gender* Male, Female
Blunt* Blunt, Penetrating
ChiefComp* MVC, Fall, Pedestrian, Motorcycle Crash, etc
Position* Passenger, Driver, Cyclist, Motorcycle Passenger, etc
Age 0 < Age <90
FSBP (Initial Blood Pressure) 0 < FSBP < 300
GCS (Glasgow Coma Score) 3<GCS <15
ISS (Total Injury Severity Score) 0<ISS <75

Pulse

0< Pulse < 230

Respiration Rate

0< Respiration < 68
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Off-site Dataset: The off-site dataset includes information on comorbidities and
complications, and contains some other physiological variables. A total of 1589 cases are
included in the databases: 588 fatal and 1001 non-fatal. The inputs include both cate-
gorical and numerical attributes. The predicted outcomes are defined as patient survival,
i.e. alive or dead, and the exact outcome for surviving patients, i.e. rehab or home. For
the exact outcome prediction, a total of 628 rehab cases and 213 home cases are used.
Table 2 presents the variables for the off-site dataset. Among the categorical variables,
“prexcomor” represents any comorbidities that may negatively impact a patient’s ability
to recover from the injury and any complication. Abbreviated Injury Scale (AIS) scores
for head, thorax, and abdomen are provided, as well as an overall score for patients with
multiple injuries. The range of AIS score values in our database is 1(minor injury) to 6
(fatal injury). Injury severity score (ISS) is the most widely used measure of injury severity
in patients with trauma and the range of possible values for ISS is 0 to 75. The range of
FURR (First Unassisted Respiratory Rate In ED) is between 0 and 99. EDRT indicates
a revised trauma score and its range is between 0 and 8. EDEYE (Lowest Glasgow Eye
Component in ED) is the value for eye response and ranges from 0 (eyes not opening) to 4
(eyes opening spontaneous ). EDVERBAL (Lowest Glasgow Verbal Component in ED) is
the value of patient’s verbal response, which ranges from 1 (no response) to 5 (oriented).
Glasgow coma score (GCS) is initially used to assess the patient’s level of consciousness
after trauma injury, and the score is used by first aid staff such as the emergency medical
services (EMS) and the physicians initially admitting all acute medical and trauma pa-
tients. It is also used in patient monitoring, for instance in intensive care. The maximum

GCS score is 15; a score higher than 13 is generally treated as a minor case, and a score
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Table 2: Dataset captured after hospital admission (* indicates the categorical variables).

Variable Alive Dead Rehab Home

Cases 1001 588 628 213

Male* 704 (70.3%) | 404 (68.7%) | 443 (70.5%) 150 (70.4%)

Female* 297 (29.7%) | 184 (31.3%) | 185 (29,5%) 63 (29.6%)

Age 41.2 £19.6 | 49.2 £24.1 | 39.6 + 19.3 37.2 + 16.6

FSBP 126 £ 33.4 | 119.3 £ 45.6 | 125.3 £ 31.6 124.5 £+ 34.1

FURR 153 £109 | 13.9+11.9 | 144+ 111 18.2 £+ 10.5

GCS 8.7+ 5.3 27.5 + 5.2 79 +£ 5.2 10.5 £ 5.1

1SS 30.5 +£ 12.8 | 35.3 + 14.7 32 + 13.2 27.1 £ 11.7

EDEYE 24+ 14 21+ 14 22+ 14 28+ 1.4

ED Verbal 2.7+ 1.8 2.3+ 1.7 24+ 1.8 3.3+ 1.8

EDRT 4.6 + 3.2 3.8 +33 4.1+ 3.3 5.7 + 2.89

Head AIS 3.0+ 1.6 3.6+ 1.6 3.1+£138 25+ 14

Thorax AIS 2.3+ 1.7 24+ 1.8 23+ 1.8 24+ 1.7

Abdomen AIS 1.1 +£15 1.1 £ 1.6 1.0 £ 1.5 1.5 + 1.7

Intubation® Yes/No

Prexcomor* 17 values: Acquired Coagulopathy, Chronic Alcohol Abuse, Chronic
Obstructive Pulmonary Disease, Congestive Heart Failure, Coronary
Artery Disease, Coumadin Therapy, Documented History of Cirrhosis,
Gastric or Esophageal Varices, Hypertension, Insulin Dependent, My-
ocardial Infarction, Non-Insulin Dependent, Obesity, Pre-existing Ane-
mia, Routine Steroid Use, Serum Creatinine > 2 mg (on Admission),
Spinal Cord Injury

Complications™ | Acute Respiratory Distress Syndrome (ARDS), Aspiration Pneumonia,
Bacteremia, Coagulopathy, Intra-Abdominal Abscess, Pneumonia, Pul-
monary Embolus

Safety* Seat Belt, None Used, Air Bag Deployed, Helmet, Other, Infant/Child
Car Seat, Protective Clothing

4.1.2  Results

The average accuracy of survival prediction, without any knowledge of pre-existing con-
ditions, is 73.9%, rising to 75.8% when this knowledge is included. Tt was discovered that

knowledge of these conditions appears at the highest level of the tree when using CART
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and C4.5, indicating their potential importance in the decision-making process. In par-
ticular, coagulopathy (a bleeding disorder), which can result in severe hemorrhage, may
be among the most important factors to consider in patients with Trauma Brain Injury
(TBI). Therefore, the off-site dataset, which contains comorbidity information, was used
for further prediction tests.

Since the total number of examples used for training is rather small and some low
accuracy rules may have been generated using the small number of examples, only rules
with at least 85% prediction accuracy on the testing sets are included in the rule base.
This threshold is chosen based on the recommendations made by trauma experts. All rules

are presented in Appendix A.

Significant Variables

In order to improve the rule quality and accuracy, it is essential to identify the key variables
in the dataset. In addition, shorter rules that are based on fewer, more significant variables
are more clinically useful for physicians. Logistic regression was used to extract these key
variables from the off-site datasets; the results are shown in Table 3. It can be seen
that nine important variables are identified. Mean and standard variation of the critical

variables and p values for the significance of independent variables are given.

Measuring Performance

The prediction results of five different machine learning methods are compared in Table
4. The performance for all algorithms is clearly superior when only significant variables
are used.

The exact outcome prediction results of five different machine learning methods when
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Table 3: Significant variables of off-site dataset (* indicates categorical variables). Cg
stands for Coagulapathy; MI for Myocardial Infarction; ARDS for Acute Respiratory
Distress Syndrome; ID for Insulin Dependent; EDRTS for Emergency Department Revised
Trauma Score; ISS for Injury Severity Score.

Variable P-value | Mean + S.D.
AIS Head <.0001 3.25 + 1.64
AIS Thorax 0.003 2.33 £ 1.78
ID* 0.02 -

MI* <.0001 -
ARDS* <.0001 -

Cg* <.0001 -

Age <.0001 | 44.15 &+ 21.70
EDRTS 0.03 12.10 £ 16.03
1SS 0.01 15.82 £ 19.03

Table 4: Performance comparison of five machine learning methods with survival predic-
tion.

Logistic | AdaBoost | C4.5 | CART | SVM
All Variables 69.4% 70% 68% | 75.6% | 73%
Significant Variable only | 72.9% 73% 75.2% | 77.6% | 9%

using only significant variables are compared in Table 5. For this prediction of Table 5,
no attempt was made to use all available variables, since the survival prediction test has

already confirmed improved performance when using only significant variables.

Table 5: Performance comparison of five machine learning methods with exact outcome
prediction.

Logistic | AdaBoost | C4.5 | CART | SVM
Significant Vars. only | 74.6% 73% 2% | 75.6% | 72.6%

Discussion with physicians revealed that all generated recommendations and predic-

tions should ideally be transparent in their reasoning; our system therefore uses CART

www.manaraa.com




31

and C4.5 are used to predict patient survival. If physicians understand the reasoning be-
hind decisions and it follows their own, their confidence in the system may be increased.
If the system’s reasoning is clinically meaningless, they can choose to disregard the rec-
ommendation; however, if the reasoning has some clinical merit, this may alert them to
previously hidden factors affecting patient outcome. In summary, the reasoning can con-
firm the physicians’ initial conclusion as well as alert them to interesting new information
that may improve patient care.

The most reliable rules (>=85%) and supporting rules (between 75% and 85%) are
presented in Appendix A (for survival) and Appendix B (for exact outcomes). There are
two reasons for including rules with accuracy between 75% and 85%. Firstly, the accuracy
of a rule may be low due to the lack of a truly complete database, rather than a flaw in the
rule itself. Secondly, even though a rule may have low accuracy, it might include knowledge
of hidden relat