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COMPUTER-AIDED TRAUMA DECISION MAKING USING MACHINE
LEARNING AND SIGNAL PROCESSING

Soo-Yeon Ji

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2008

Major Director: Kayvan Najarian
Associate Professor, Department of Computer Science

Over the last 20 years, much work has focused on computer-aided clinical decision support

systems due to a rapid increase in the need for management and processing of medical

knowledge. Among all fields of medicine, trauma care has the highest need for proper

information management due to the high prevalence of complex, life-threatening injuries.

In particular, hemorrhage, which is encountered in most traumatic injuries, is a dominant

factor in determining survival in both civilian and military settings. This complication

can be better managed using a more in-depth analysis of patient information. Trauma

physicians must make precise and rapid decisions, while considering a large number of

patient variables and dealing with stressful environments. The ability of a computer-aided

decision making system to rapidly analyze a patient’s condition can enable physicians to

ix
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make more accurate decisions and thereby significantly improve the quality of care pro-

vided to patients. The first part of this study is focused on classification of highly complex

databases using a hierarchical method which combines two complementary techniques:

logistic regression and machine learning. This method, hereafter referred to as Classifica-

tion Using Significant Features (CUSF), includes a statistical process to select the most

significant variables from the correlated database. Then a machine learning algorithm is

used to identify the data into classes using only the significant variables. As the main

application addressed by CUSF, a set of computer-assisted rule-based trauma decision

making system are designed. Computer aided decision-making system not only provides

vital assistance for physicians in making fast and accurate decisions, proposed decisions

are supported by transparent reasoning, but also can confirm a physicians’ current knowl-

edge, enabling them to detect complex patterns and information which may reveal new

knowledge not easily visible to the human eyes. The second part of this study proposes an

algorithm based on a set of novel wavelet features to analyze physiological signals, such

as Electrocardiograms (ECGs) that can provide invaluable information typically invisi-

ble to human eyes. These wavelet-based method, hereafter referred to as Signal Analysis

Based on Wavelet-Extracted Features (SABWEF), extracts information that can be used

to detect and analyze complex patterns that other methods such as Fourier cannot deal

with. For instance, SABWEF can evaluate the severity of hemorrhagic shock (HS) from

ECG, while the traditional technique of applying power spectrum density (PSD) and frac-

tal dimension (FD) cannot distinguish between the ECG patterns of patients with HS

(i.e. blood loss), and those of subjects undergoing physical activity. In this study, as the

x
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main application of SABWEF, ECG is analyzed to distinguish between HS and physical

activity, and show that SABWEF can be used in both civilian and military settings to

detect HS and its extent. This is the first reported use of an ECG analysis method to

classify blood volume loss. SABWEF has the capability to rapidly determine the degree

of volume loss from hemorrhage, providing the chance for more rapid remote triage and

decision making.

xi
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Executive Summary and Contributions

This work targets two types of complex problems: classification of complex/correlated

dataset, and analysis of noisy/complex signals. For the first problem, a novel hierarchical

method is developed for classification of highly complex and correlated dataset. This algo-

rithm includes a statistical selection process in which modified version of logistic regression

is employed to select the most significant variables in the data. Then a machine learning

method is used to classify data into classes using only the identified significant variables.

Extensive simulations on a number of databases indicate clear advantages of the proposed

method over existing methods for a wide variety of applications.

In the second part of this work, a set of novel wavelet-based features, together with

a systematic method to extract them from complex noisy signals, are introduced. These

features are proved to be extremely efficient in distinguishing among signals that are very

similar to each other. In other words, the introduced features can capture very detailed

differences that cannot be detected by traditional signal processing methods such Fourier-

based, Fractal-based, and power spectral density based methods. The capabilities of our

measures are demonstrated in a number of applications. In all of these applications the

novel measures distinguished classes that cannot be separated by any traditional method.

The target application for the developed algorithms is trauma decision making sys-

tems. The urgent need for computer-assisted decision making in medical applications

is a consequence of the rapid development of novel medical measurement technologies,

xii
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fast growth in medical knowledge management, and the need for faster and more accu-

rate decisions. Thus, finding the most relevant variables is critical in developing efficient

computer-assisted decision making systems to assist physicians in patient treatment and

resource allocation.

In this research, improving feature selection/feature extraction methods are focused in

order to identify the most significant variables, considering the relationship of each variable

with the outcomes. This will allow the development of systems that can provide physicians

with the reasoning behind interesting new information/patterns which may have not been

previously observed by experts.

The motivation for developing the decision-making system to analyze traumatic injury

data is due to their prevalence and life-threatening nature of these injuries. The mortality

rate for trauma patients is high, and the injuries themselves are typically very complex.

Also, due to the rapid growth in medical knowledge, physicians may need assistance with

exact reasoning when presented with large volumes of complex information. It is therefore

increasingly important to develop trauma computer-aided decision-making systems that

can improve the quality of patient care.

In this research, two types of algorithms are developed, for two types of medical appli-

cations.

1) In the first study, predictive computer-assisted rule based trauma decision making sys-

tems using a unified computational model that combines statistical regression and

machine learning techniques is developed. It was shown that by selecting only the

xiii
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statistically significant variables, regardless of the specific machine learning method

used in the next step, the overall resulting predictive system is not only more accu-

rate and more reliable but also provides predictions and recommendations that are

transparent and easier for physicians to understand. Besides this novelty in selection

and filtering of variables, in the machine learning step we prove that, despite the

hypotheses made in some previous studies, rule-based systems can equal or exceed

the performance of non-transparent methods such as neural networks and support

vector machines in trauma decision making scenarios, if the models are trained and

tested correctly.

2) In all types of trauma injury, the existence and severity of hemorrhage is a major factor

in determining patient survival. In the second part of this research, novel approach

are proposed to analyze some major physiological signals to detect and evaluate the

severity of a patient’s hemorrhagic shock (HS). The physiological signals used in this

research, such as Electrocardiogram (ECG), can provide invaluable information not

visible to human eyes. Specifically, the severity of hemorrhage is often evaluated

using heart rate variability (HRV) analysis of the ECG. Currently, power spectral

density (PSD) and fractal domain (FD) are the common HRV analysis tools. How-

ever, it has been shown that these traditional methods are unable to distinguish

between central volume loss (the main indicator of HS) and physical activity (such

as typical daily exercise), as they have similar HRV patterns. This is problematic

given the desire to use changes in heart rate to detect the presence of acute volume

xiv
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loss due to hemorrhage. In this research, a new HRV analysis approach is proposed

based on wavelet transformation to determine blood loss severity. In addition, these

methods can identify the degree of hemorrhage shock. Again, the combined set of

algorithms proposed for this study have the to be used for other biomedical and

non-biomedical signals.

The following sections provide more details on these new computational approaches/methodologies.

Section 1. Computer-Aided Trauma Decision Making using Machine Learn-
ing

None of the existing trauma decision-making algorithms is in widespread use in trauma

centers because: 1) they use non-transparent methods; 2) the performance of these algo-

rithms is typically poor due to the exclusion of relevant attributes and the inclusion of

some that are irrelevant to the task at hand. Inclusion of irrelevant variables results in

rules that are too complicated to be clinically meaningful.

Predictive computer-assisted rule based decision making system is developed by com-

bining two complementary techniques: logistic regression and different families of machine

learning methods. Logistic regression is useful in describing relationships among multiple

independent variables and a specific outcome. Furthermore, rule-based methods in ma-

chine learning are easy to understand and interpret while also being capable of dealing

with categorical variables and missing values. Figure A shows the high-level schematic di-

agram of the proposed system and it contains four main tasks: pre-processing, extraction

of significant variables, rule extraction, and rule testing and evaluation.

xv
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Figure A: Block diagram for entire approach.

It is considered that appropriate feature selection may have a critical impact on pre-

diction accuracy. Therefore, logistic regression is used for selecting significant features

and the proposed method (in Chapter 5) is evaluated by comparing the results of machine

learning classification using all available variables and only significant variables. In order

to examine the significance of the individual variables, logistic regression performs the like-

lihood ratio significance test. In logistic regression, the stepwise model selection method is

commonly used to find the best subset of variables to predict the outcomes, considering all

possible combinations. As part of the process, any single predictor variable may be added

or deleted. There are major issues with stepwise model selection for medical application.

Although the method is designed to find important variables it does not guarantee that

the most significant variables are selected, due to the repetition of insertion and deletion.

The proposed approach has improved the performance over the stepwise method (Chapter

4 and Chapter 5).

For rule generation, two decision tree algorithms, CART [22] and C4.5 [120, 119, 118],

are used to generate the rules. These are then evaluated using 10-fold cross validation.

A set of reliable rules is created after rule filtering and assessment by physicians of the

clinical merit of the rules. The resulting transparent rule set provides physicians with the

exact reasoning behind the system’s recommendations and predictions. This research also

proves that for a wide range of trauma applications, rule-based methods such as CART and

xvi
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C4.5 can be trained in such a way that the accuracy, sensitivity, and specificity is either

competitive with or even better than non-transparent methods such as support vector

machines and AdaBoost. Those machine learning algorithms are described in Chapter

3. This is a finding that, contrary to some reports in the literature, encourages the use

of rule-based systems for many medical and non-medical applications. It is hypothesized

that one factor in making rule-based systems more reliable and accurate is the use of a

“significant feature selection” step as a pre-processing stage, as proposed by this research.

The proposed hierarchical model, CUSF, can not only improve feature selection in order

to identify the most significant variables, but also provide physicians with the reasoning

behind interesting new information / patterns that may have not been previously observed.

Section 2. Heart Rate Variability (HRV) Analysis Using Advanced Signal
Processing

A new method to analyze HRV is proposed, based on wavelet transformation of Elec-

trocardiogram (ECG) data. The capability of the algorithm to distinguish between ECG

for subjects undergoing lower body negative pressure (LBNP) that simulates the loss hem-

orrhage in human subjects, and subjects doing physical activity is performed. Figure B

presents a schematic diagram of the overall method and its comparison with the traditional

HRV analysis technique.

xvii
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Figure B: Detailed schematic diagram of entire process - multiple tasks are performed on

ECG data.

For any HRV analysis, the QRS complex (see Fig 7) must be detected first as it is the

most significant waveform in an ECG signal, and the HRV is generally extracted from the

ECG recording by detecting RR intervals (Section 5 in Chapter 6). Figure C presents the

schematic diagram of the process of analyzing ECG and extracting RR intervals.

xviii
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Figure C: Detailed schematic diagram of ECG analysis.

In order to detect the QRS complex, modified version of the Pan-Tompkins algorithm

[109] is used. Because subject movement (including minor muscular activity) can cause

high frequency noise components or other types of electromagnetic interface, a modified

Pan-Tompkins algorithm is used by adding a histogram process step in which the charac-

teristics of the signal’s amplitude distribution are analyzed and used for extra filtering of

the signal.

Once the HRV is extracted based on the RR interval, the traditional approach (power

spectral density and fractal dimension) is applied and compared with the new approach

(wavelet transformation). The results with the state-of-the-art in the field are compared

and show the advantages of the new method over the existing methods. The traditional

method of HRV analysis via power spectral density (PSD) uses an average power with

certain ranges of frequencies, and applies the Fast Fourier Transformation (FFT) for cal-

culations. However, FFT cannot reliably be used to process non-stationary signals such

as ECG. This renders the traditional HRV analysis method incapable of distinguishing

xix
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between the ECG patterns in HS (or LBNP) and physical activity.

In order to overcome this problem, a novel approach, called Signal Analysis Based on

Wavelet-Extracted Features (SABWEF), is designed to deal with non-stationary signals.

Since wavelet transformation calculates the similarity between the input signal and a

mother wavelet, and the Daubecies families of wavelets have the most similar shape to the

QRS complex, Daubecies wavelets for ECG analysis are used. The results using Daubecies

4 and Daubecies 32 are compared. Since the results show no significant differences between

the two wavelets, Daubecies 4 is used for the full study.

SABWF provides a specialized method of QRS detection, filtering, wavelet decom-

position, and feature extraction for ECG analysis. All these techniques as well as their

combination can be used to analyze other biomedical and non-biomedical signals.

Unlike traditional HRV analysis, i.e. SABWEF, can differentiate between cases of

physical activity and hemorrhage shock. The method may also be useful in quickly deter-

mining the degree of volume loss due to hemorrhage. This would prove an invaluable tool

in rapid patient triage and decision making.

xx
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CHAPTER 1 Introduction

1.1 Traumatic Injury

Many Americans experience minor and major accidents in their daily lives, some of which

are serious injuries that can result in death or permanent disability; of these, traumatic

injuries are the most prevalent. Patients who survive a head injury may suffer serious

consequences, including lifelong paralysis and severe disability [108, 148]. According to the

Federal Centers for Disease Control and Prevention (CDC) in 2004, 1.4 million Americans

sustain a traumatic brain injury (TBI) each year, and 50,000 of those individuals die as a

result of these injuries [26]. Since mild TBI does not affect life expectancy, young people

potentially face several decades of disability. Specifically, it is estimated that each year

approximately 100,000 children are permanently disabled. TBI accounts for about 29,000

of these cases, and a significant percentage result in neurological impairment [27, 49, 11,

131].

A potentially fatal consequence of traumatic injury is hemorrhagic shock (HS). This is

particularly common on the battlefield, where it accounts for nearly 50% of trauma deaths,

but is also encountered in civilian life, where it accounts for 39% of trauma deaths. A

study of the Israeli military found that in 96% (351 out of 337) of the patients, death due

to blood loss occurred within the first four hours after injury. The major causes of the

deaths in this group were hemorrhage (50%) and neurological trauma (36%); the rest were

1
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due to severe multiple injuries [19, 134, 158]. The short period between injury and death

and the high rate of complications are both associated with a lack of appropriate medical

attention and limited evacuation facilities in the field [8, 47].

1.2 Motivation Behind Use of Medical Decision Making Systems

Due of the rapid growth of medical information and knowledge available at the time of

decision making, physicians have become more reliant on assistance from other experts in

cases outside of their own area of expertise. Furthermore, physicians who first diagnose

a patient must choose from a variety of expensive medical tests to help ensure correct

diagnosis and optimal therapeutic management. While these tests provide invaluable in-

formation, decision making based on this continuously growing collection of information

is a challenging task. Early and effective trauma patient control can improve the chance

of survival more than any other measure; however, achieving this is far from simple. In

1996 and 2000 (updated in 2003), the Brain Trauma Foundation published guidelines for

the management of severe TBI [54], which were accepted by the American Association of

Neurosurgeons and endorsed by the World Health Organization Committee in Neurotrau-

matology. These guidelines provide valid criteria to identify high-risk patients, with the

aim of reducing inappropriate care, controlling geographic variations in practice patterns,

and maximizing health care resources. However, the implemetation of practice guidelines

was slow due to deficiencies in physician training [101].

In developed countries, the rate of growth of health care expenditures has exceeded

that of growth in income for a considerable period of time. For example, in the United
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States health care expenditures as a share of gross domestic product (GDP) have tripled

since 1950, from 5% then to 15% today [46, 66]. This increase in spending has far exceeded

the supply for healthcare revenue and services, and interest in medical decision support

systems has risen accordingly due to the need for cost-control and improvement in quality

of care.

In a recent study of error in medicine [24], a database was constructed from the 1992

American Hospital Association with 1,116 hospitals participating. The study found 17,338

medication errors that adversely affected patient outcome; furthermore, medication errors

occurred in 5.07% of the patients admitted each year, and on average each hospital experi-

enced a medication error every 22.7 hours. Leape [87] found that the average intensive care

unit is subject to an even higher error rate - almost two errors per day in each unit- that

can have serious and possibly fatal consequences. This illustrates the clear importance of

computerized decision making systems as a research issue.

1.3 Significance of Study

The clinical significance of a computer-aided decision making system lies in its ability to im-

prove diagnosis and care by helping physicians make more accurate decisions in a stressful

environment, and to provide the reasoning behind all recommendations and predictions.

Moreover, by examining the decision-making process using a qualitative methodology,

new knowledge can be gained, particularly in the planning of long-term care. An accurate

decision-making system may also be of use in rural and remote areas where physicians

with extensive trauma experience may not be available, and may be effective in classroom
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education of medical students.

In the computer science field, the proposed methods, classification using significant

features (CUSF), provide the following novelties and contributions:

1. In the first part of the dissertation, a hierarchical method, CUSF, for classification

of highly complex and correlated dataset is presented. This method uses statistical

filtering where a modified version of logistic regression is employed to select the most

significant variables, and then a machine learning method is used to classify the

data into functional classes using only the identified significant variables. Extensive

simulations with both medical and non-medical databases prove the superiority of

the proposed method over existing methods over a wide variety of applications. We

also show that the application of the proposed method, along with rule extraction

machine learning methods such as CART, on trauma databases provides rules that

can change the way medical decision-making systems are perceived and used by

medical community.

2. The second part of the dissertation introduces a set of novel wavelet-based features,

signal analysis based on wavelet-extracted features (SABWEF), and a systematic

method to extract them from complex noisy signals. These features are proved to be

extremely efficient in distinguishing among functional classes that are very similar

to each other in signal level, i. e. the features can capture very detailed differences

that cannot be detected by traditional signal processing methods such Fourier-based,

Fractal-based, and power spectral density based methods. The capabilities of the

wavelet-based features are tested, verified, and demonstrated against a number of
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applications, in all of which these features distinguished classes that cannot be sepa-

rated by any traditional method. These applications include the heart rate variability

(HRV) analysis that has tremendous impact on patient care. Thus, the proposed

wavelet based features may useful to extract hidden knowledge from highly noisy

and complex signals as well as HRV signal.

1.4 Aims of Study

The main aim of this study is to develop a computer-aided trauma decision making system

that integrates all relevant knowledge from medical records, and ultimately generates

reliable rules which can support clinicians in applying all information to provide better

care to patients. The specific aims of this research are described below:

1. Apply machine learning methods, specifically decision tree algorithms, to extract

rules directly from datasets and provide physicians with the reasoning behind them.

Show that transparent rule-based systems perform as well as other methods (such

as neural networks).

2. Show that developed hierarchial method is well performed on medical dataset as well

as non-medical dataset.

3. Analyze heart rate variability (HRV) using wavelet transformation to predict severity

of hemorrhage shock (HS). Use advanced signal processing to differentiate between

cases of blood loss and physical activity, which present similar HRV patterns in test

subjects.

4. Define new features based on discrete wavelet transformation (DWT) of ECG that
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can be used to estimate blood loss severity. The features will be defined based on the

energy of detail coefficients of Daubecies DWT. Also, the introduced novel features

are tested using gait aging signal for further validation.

5. Apply machine learning algorithms to the extracted informative features to predict

the severity of blood loss. Statistical analysis is used to validate the extracted fea-

tures.

The remaining chapters of this thesis are organized as follows. Chapter 2 describes ex-

isting work and the benefits and limitations of comparable medical diagnosis techniques.

Chapter 3 explains the chosen approaches and methodologies, including the motivation

behind their use as well as their significance. Chapter 4 presents application results in

predicting patient survival (alive/dead), exact outcome (rehab/home), and pelvic injury

severity. In Chapter 5, testing and validation results using non-medical datasets is pre-

sented. Another specific approach using signal processing methods for heart rate vari-

ability (HRV) analysis is given in Chapter 6. In Chapter 7, the wavelet method features,

SABWEF, are tested to gait aging dataset with two conditions (healthy and Parkinson’s

disease) in order to validate the applicability of our approach. The final chapter presents

the conclusions and discussion of this study as well as describing future work and possible

enhancements.
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CHAPTER 2 Related work

This chapter describes previous work in developing computer-aided decision-making

systems. First, the motivation and background information about such systems are de-

scribed. Next, machine learning algorithms and their significance in this field are pre-

sented. Finally, the benefits and limitations of logistic regression, which is used frequently

in analyzing medical data, and decision trees algorithms are described.

2.1 Existing Computer-Aided Decision Making Systems

Several computer-assisted systems exist for decision-making in trauma medicine. For

instance, HELP, a hospital information system, has been used at Latter-Day Saints (LDS)

Hospital since 1967. Based on an evaluation report of the system [59], HELP has been used

by clinical staff because its computerized clinical decision-support provides improvements

in patient care. However, the system suffers from several shortcomings: it uses limited

patient information, typing information into the system takes time, and the user must wait

a significant time for the results. The last disadvantage, i.e. delay, is a major reason why

HELP and other decision support systems are not in widespread use [157]. Furthermore,

the HELP system is not integrated with the electronic medical records, and the data

storage requirements are substantial.

The majority of medical decision-making systems perform a statistical survey of similar

cases in trauma database with patient demographic information [53, 65]. As such, they may

7
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not be sufficiently accurate and/or specific for practical implementation. Another issue

is the use of artificial neural networks in medical decision-making systems. Even though

neural networks have good performance, due to the ‘black box’ nature of neural networks,

the knowledge stored in the trained networks is not transparent and the reasoning behind

the predictions and recommended decisions is obscured [93, 75].

Bayesian statistical technique is also used by calculating the prior probability of a

disease and conditional probabilities of its symptoms. It shows fairly good performance,

but has some limitations. Specifically, the assumption of conditional independency of at-

tributes and mutual exclusiveness may not be satisfied in medicine, as overlapping disease

categories are common in the real world. Another critical issue is that this method requires

a large database to accurately determine all conditional probabilities [121, 135].

As an example of a specific application, studies have been performed to develop an

easy and simple predictive model for survival of TBI patients. Signorini [137] presents

a simple model that predicts patient survival using age, Glasgow Coma Score (GCS),

Injury Severity Score (ISS), pupil reactivity, and the presence of hematoma on CT scans.

Although the model is efficient in usage and well-designed, the accuracy and reliability of

its rules may be limited due to the small number of variables used.

In general, computer-aided systems have the potential to significantly improve trauma

decision making and resource allocation, and it is reported that since trauma injuries

generally have specific causes with established methods of treatment, fatal complications

and long-term disabilities can be reduced by making less subjective and more accurate

decisions in trauma units [108]. In addition, it has been suggested that the cost of trauma

care may be significantly reduced by an inclusive trauma system with an emphasis on
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computer-aided resource utilization and decision-making [10].

Current guidelines for trauma care in the battlefield also may be significantly im-

proved by continuously observing the patients and their biomedical signals. This can aid

the early detection of severe blood loss. Therefore, the most important factors in field

care of trauma patients are appropriate training of the medical personnel and sufficient

preparation for environmental conditions [44, 83]. Also, early and effective hemorrhage

control may improve the chance of survival more than any other measure.

However, even though medical protocols have been developed for the successful man-

agement of trauma patients, currently there is no widely used computer-aided system that

integrates and processes patient information, compares the current cases with those pre-

viously observed, and evaluates the severity of the case to enable faster and more reliable

decision making. Therefore all the issues mentioned above should be addressed.

In summary, there are three main reasons why no existing decision-making system is

in widespread use in trauma centers:

1) The use of non-transparent methods, such as neural networks.

2) The lack of a comprehensive database integrating all relevant available patient infor-

mation.

3) Poor performance due to the exclusion of relevant attributes and the inclusion of those

irrelevant to the task in hand, resulting in rules that are too complicated to be

clinically meaningful.
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(a) (b)

Figure 1: Total number of published papers within two year periods from 1995 to 2008 in
PubMed, CiteSeer, and Google Scholar. The charts show how many papers were published
related to the analysis of medical data 1(a) and trauma injury data 1(b).

2.2 Benefits and Limitations of Logistic Regression and Decision Tree Algo-
rithms

Over the past 20 years, many comparative studies between decision trees and logistic

regression (LR) have been performed [92]. Generally, the Classification and Regression

Trees (CART) algorithm is compared with LR. Figure 1(a) shows the total number of

published papers related to the analysis of medical data, using several algorithms such as

CART, C4.5, and LR. Figure 1(b) displays the same information relating specifically to

traumatic injury. It is clear that the rate of increase in the use of logistic regression has

exceeded that of CART and C4.5.

William [92] compares one of the decision tree algorithms, Iterative Dichotomiser 3

(ID3) algorithm, to logistic regression (LR) using a database of 5,773 cases. His study

found that LR outperforms ID3. However, LR analysis is very difficult to use in clinical
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applications, particularly when the outcome variable has more than two values. Further-

more, Kuhnert [84] emphasizes that non-parametric methods such as CART can provide

more informative variables than LR. His study also states that CART is more useful in

the medical field where access to “rule-like” models for decision making is extremely im-

portant [91]. However, many previous studies [92, 112, 151, 145, 127, 62] have compared

the performance between LR and decision trees, and the results suggest that there is no

completely preferable method; the result of comparison depends upon the chosen applica-

tion.

Although some studies have found that LR outperforms CART, note that there are

certain conditions on these comparisons. For instance, LR performs better for smaller

datasets and it also provides a concise summary of the relationships between the out-

comes and the predictors, which decision trees are unable to do. However, decision trees

are easy to understand and the position of a predictor variable at the root shows its dom-

inance compared with other variables. In addition, CART is likely to be more practical in

a clinical setting due to its easy interpretation [92, 151], and is useful in decision making

for long-term patient care [117]. Therefore, the interdependent use of both techniques may

be a promising approach.

2.3 Significance of the Machine Learning Approach

Machine Learning (ML) [21, 10, 11, 102, 79] is an Artificial Intelligence (AI) technology

that has been employed in a variety of statistical, probabilistic and optimization tools to

automate complex decision making and problem solving tasks. Many statistical methods
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are designed based on multivariate regression or correlation analysis. These approaches,

although powerful, assume that the variables are independent and that the data can be

modeled using linear combinations of these variables. When the relationships are non-

linear and the variables are not independent, these methods cannot be applied. Since

many biological systems are fundamentally nonlinear and their parameters conditionally

dependent, machine learning algorithms are often more appropriate than statistical meth-

ods [138, 139].

There are several reasons why machine learning is popular for medical applications:

1) It is possible to build a model from the data which may help the physician, at the

first examination of the patient, to decide the severity of the injury or disease, and

whether the patient should be admitted to the hospital or could be treated as an

outpatient.

2) It is possible to extract hidden relationships and correlations among the data.

3) Environments change over time. Systems that can adapt to a changing environment

would reduce the need for constant redesign.

4) Missing values are a common problem in medical applications, and some machine

learning algorithms are able to deal with them [90].

Note, however, that the success of machine learning is not always guaranteed. If

the dataset is of poor quality, the results may follow suit. A minimum requirement for

any machine learning technique is a sufficiently large dataset that can be partitioned



www.manaraa.com

13

into disjoint training and test sets or subjected to some reasonable form of n-fold cross-

validation. Machine learning algorithms that are commonly used in the medical field

include support vector machines (SVM) and decision tree algorithms such as Classification

and Regression Trees (CART) and C4.5. in Chapter 3, These methods are explained in

detail.
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CHAPTER 3 Classification Using Significant Features

(CUSF)

This chapter introduces a classification method for highly complex datasets using a

hierarchical approach that combines two complementary techniques; logistic regression and

machine learning. This method is referred to as Classification Using Significant Features

(CUSF). The method incorporates only the most significant variables selected from the

potentially correlated input data and uses machine learning algorithms to classify data

using only the significant variables.

The rest of this chapter is organized as follows. Section 3.1 introduces the proposed

approach. A detailed description of the methods is presented in Section 3.2, including four

machine learning algorithms.

3.1 Introduction

Decision tree algorithms, specifically CART and C4.5, are used for rule generation. CART

and C4.5 deal effectively with missing values and categorical variables, leading to their

widespread use in medical informatics. Kononenko [81] compares some techniques such

as Bayes’ theorem, neural networks, and decision trees by considering performance, trans-

parency, explanation of reasoning, dealing with missing values, and reliable prediction with

small dataset. Note that decision tree algorithms may better satisfy those characteristic

of medical diagnosis. However, despite the relatively successful performance of these algo-

14
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rithms in medical applications, they have had limited success in separating and identifying

important variables in applications where there are a large number of available attributes.

This suggests that combining machine learning with a statistical method to identify the

most informative variables can increase our understanding of the patterns in medical data

and thus help generate more reliable rules.

Therefore, the use of logistic regression, which provides knowledge of the relationships

among the multiple independent variables and the response variable, is considered and

therefore it is useful in finding statistically significant variables to model tasks with binary

outcomes. Creating rules using all available variables can lead to the inclusion of less rele-

vant or reliable attributes, which can then result in random correlations and the generation

of rules which are clinically meaningless. Retaining the less informative variables and/or

including highly correlated attributes may also increase the complexity of the rules and

make them less suitable for clinical applications. Appropriate feature selection therefore

has a significant impact on the accuracy of prediction.

A rule-based computer aided system is proposed to predict the survival (alive or dead),

exact outcome (home or rehabilitation), and severity (measured as the number of days

stayed at ICU) using traumatic injury dataset. The final rule-based decision making sys-

tem can provide the reasoning behind its recommendations, and incorporate information

from future cases.

The generated rules are also tested against support vector machine (SVM), AdaBoost,

and stand alone logistic regression. Though these methods do not generate rules, they are

tested in the interest of performance comparison. The intention is to examine whether

there are rule-based systems that can compete with or beat non-transparent machine
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learning methods in terms of accuracy and performance. Testing other algorithms also

validates the accuracy and stability of the rule-based system. Then quantitative measures

of the statistical reliability and the accuracy of the resulting predictions and recommen-

dations are tested.

3.2 Method

In this section, CUSF methodology, which combines logistic regression and machine learn-

ing algorithms, is explained to generate reliable rule based systems. Figure 2 presents a

block diagram of the proposed approach. It consists of four steps: pre-processing, sig-

nificant variable selection, rule generation, and rule testing and validation. Each step is

designed to support creation of the most reliable rules.

Figure 2: Block diagram for entire approach.

3.2.1 Pre-Processing

In general, medical datasets contain continuous variables and nominal (categorical) vari-

ables. Figure 3 explains the pre-processing procedure in more detail.

As part of the pre-processing step, every nominal variable is replaced with several

dichotomous variables. For example, there are seven types of complication, and each type

is treated as an individual variable having two levels (Yes/No).



www.manaraa.com

17

Figure 3: Diagram of pre-processing procedures.

3.2.2 Significant Variable Extraction

Logistic regression (LR) is used to extract significant variables. The logistic function is

used to calculate the expected probability of a dichotomy as follows:

πi = pr(Y = 1|X) =
1

1 + e−(β0+β1X1+β2X2+...)
(1)

where Xi are variables with numeric values, Y is the outcome (dichotomous; 0/1, e.g.

Alive/Dead), and the β’s are the regression coefficients that quantify the contributions of

the numeric variables to the overall probability [64]. Logistic regression provides knowl-

edge of the relationships and strengths among the multiple independent variables and the

response variables. It does not assume any distribution on the independent variables; they
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do not have to be normally distributed, linearly related or of equal variance within each

group [72, 152]. However, logistic regression does require a linear relationship between

the log-odds of outcomes and predictors. The linearity assumption has been checked by

categorizing the predictors into a number of categories with equal intervals, then using

the Hosmer-Lemeshow (H-L) goodness-of-fit test under the hypothesis that the model set

is good. For our dataset, the H-L test, performed using the Statistical Analysis Software

(SAS), resulted in a non-significant p-value, indicating that the linearity assumption is

valid.

To test the significance of the individual model parameter, logistic regression uses

likelihood testing. The likelihood ratio test itself does not tell if any particular independent

variables are more important than others. However, the difference between the full model

and a nested reduced model which drops one of the independent variables can be analyzed.

The difference in -2log-likelihood (-2LL) using maximum likelihood estimation is compared

for the full model (L1) and the reduced model (L0):

−2 log(
L0

L1
) = −2[log(L0) − log(L1)] = −2(L0 − L1) (2)

A non-significant difference indicates no effect on performance of the model, hence we can

justify dropping the given variable. For this study, only the significant variables (p-value

<=.05) are selected. SAS is used to calculate the significance of individual attributes.

Note that stepwise model selection is also available to discover the significance of vari-

ables. In the study of statistical regression, the stepwise method is commonly used to find

the best subset of variables for outcome prediction, considering all possible combinations

of variables. However, the stepwise approach may not guarantee that the most significant
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variables are selected due to the repetition of insertion and deletion. For example, age

may not be selected as an important variable [144, 150]; however, physicians may believe

that patient age is very important in deciding treatment.

The fact that appropriate feature selection may have a critical impact on prediction

accuracy is postulated. Thus, the results generated using all available variables and those

generated using only significant variables are compared.

3.2.3 Rule Generation

Two decision tree algorithms, CART and C4.5, are used to generate the rules using only

significant variables. SVM, AdaBoost, and logistic regression are also tested in the interest

of performance comparison. Figure 4 describes the rule generation procedure in more

detail.

Figure 4: Reliable rule generation process.

Ten-fold cross validation is performed to measure the quality and scalability of the

rules. This involves partitioning the data into ten subsets and testing whether the subsets
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have a similar outcome distribution. The datasets are divided into N mutually exclusive

subsets, and at each step one is used as the validation set and the other N-1 form the

training set (in Figure 4, N=10). This is repeated N times, so each of the subsets is

used as the validation set exactly once. The results are then averaged to generate a final

estimate. Repeating the analysis multiple times has a considerable computational cost,

but the advantage is that it does not matter how the data set is partitioned; every data

value will be in a testing set once, and in a training set nine times. The accuracy when

using all available variables and using only the significant variables is compared with the

machine learning algorithms using 10-fold cross validation.

3.2.4 Rule Testing & Rule Validation

Once rules are generated, each individual rule is tested to measure individual rule accuracy.

Then, all rules are evaluated by physicians. Consequently, only rules with both high

accuracy and a sufficiently large number of supporting examples are used to form the rule

base. The filtered rules therefore both confirm to the physicians’ existing knowledge and

enable them to analyze new interesting patterns that may reveal new facts. The existing

knowledge may therefore be improved.

The next step is to measure rule sensitivity and specificity. Let FP, TP, FN, and

TN be the number of false positives, true positives, false negatives and true negatives,

respectively. The following measures are calculated:

Sensitivity =
TP

(TP + FN)
(3)

Specificity =
TN

(FP + TN)
(4)



www.manaraa.com

21

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(5)

Non-medical dataset is also tested to validate this feature selection approach in Chapter

5.

3.2.5 Machine Learning Algorithms

In this section two decision tree algorithms,CART and C4.5, are described. Also, two

other machine learning algorithms, AdaBoost and SVM, are explained.

C4.5

C4.5 [120, 119, 118] extends Quinlan’s basic ID3 decision tree algorithm [118]. It is more

successful in avoiding overfitting, is able to handle continuous variables, and is more com-

putationally efficient. The original ID3 algorithm calculates information gain when choos-

ing attributes:

Info(S) = −
n∑

i=1

p(ki, S) · log2 p(ki, S) (6)

where p(ki, S) is the relative frequency of examples in S that belong to class ki.

However, ID3 is biased when an attribute has many values. C4.5 uses gain ratio to

select attributes. Gain ratio is a modification of the information gain that reduces bias,

calculated as:

GainRatio(S) =
Info(S)

−∑n
i=1

p(ki,S)
|S| log2

p(ki,S)
|S|

(7)

where |S| is the size of S.

To generate rules, C4.5 uses a divide-and-conquer algorithm to split training data into

disjoint regions of the variable space, according to pre-assigned target labels [128]. At
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each step, C4.5 splits on the best attribute according to the gain criterion. This criterion

is based on entropy, i.e. the randomness of the class distribution in the dataset. The

criterion is the greatest difference in entropy of the class probability distribution of the

current subset S and the subsets generated by the split.

The best split is the one that most reduces this value. The output of the algorithm is

a decision tree, which can be easily represented as a set of symbolic IF-THEN rules.

Classification and Regression Tree (CART)

CART, designed by L. Breiman [22], applies information-theoretic concepts to create a

decision tree. This allows for the capture of rather complex patterns in data, and their

expression in the form of transparent grammatical rules [91]. CART’s nonlinear extensions

are widely used in data mining and machine learning due to the algorithm’s efficiency in

dealing with multiple data types [57] and missing data. For missing values, CART simply

uses a substitution value, having the most similar split with them [22]. In addition, CART

supports an exhaustive search of all variables and split values to find the optimal splitting

rules for each node. CART uses the Gini index in order to choose attributes:

Gini(S) = 1 −
n∑

i=1

p2
i (8)

where pi is the relative frequency of class i in S. After splitting S into two subsets S1

and S2 with sizes M1 and M2, the Gini index of the split data is defined as:

GiniSplit(S) =
M1

|S|Gini(S1) +
M2

|S|Gini(S2) (9)

where |S| is the size of S. Thus, the smallest Gini split is chosen as the split node.
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The splitting stops at the pure node containing the fewest examples [60].

Adaptive Boost (AdaBoost)

AdaBoost, introduced by Freund and Schapire [55], is an algorithm that constructs a

robust classifier as a linear combination of weak classifiers. Adaboost repeatedly calls a

given weak learning algorithm in a set of rounds t = 1, . . . , T . A distribution of weights is

maintained over the training set, such that Dt(k) is the distribution’s weight for training

example k on round t. The aim of weak learning is to find a good weak hypothesis

ht : X → {−1, +1} for the distribution Dt, where goodness is measured by the error of

the hypothesis with respect to Dt. Then Dt is updated such that incorrectly classified

examples have their weights increased, it forces the weak classifier to concentrate on the

more difficult training examples. Correspondingly, correctly classified examples are given

less weight. Adaboost selects some parameter αt to denote the importance of ht, and

after all rounds are complete, the final hypothesis H is a weighted majority vote of all

T weak hypotheses. It has been shown that, as with other boosting algorithms, if each

weak hypothesis is at least slightly better than random, then the training error falls at an

exponential rate. However, Adaboost is also able to adapt to the error rates of individual

weak hypotheses, so each subsequent classifier is adjusted in favor of examples mislabelled

by previous classifiers [52].

Support Vector Machine (SVM)

SVMs [154] are supervised learning methods used primarily for classification. An SVM

treats its input data as two sets of vectors in n-dimensional space: positive and negative

examples. In this space, it constructs an optimal hyperplane that preserves the maximum
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distance between the two sets [143]. Since SVM is able to handle large feature spaces it

has been used successfully to solve many real world problems such as text categorization,

image classification, protein analysis, cancer data classification, and hand-writing recog-

nition [58]. Consider a set of N labelled training examples D = (x1, y1), . . . , (xn, yn) with

yi ∈ {+1,−1} and xi ∈ Rn, where n is the dimensionality of the input. Let φ : Rn → F

be the mapping function from the input space to the feature space. If the two classes

are linearly separable, the SVM algorithm finds a hyperplane (w, b) that maximizes the

margin

γ = min
i
{yi < w,φ(xi) > −b} (10)

where b is a real number (bias term) and w and φ have the same dimensionality. For an

unknown input vector xj , classification means finding:

f(xj) = sgn(yi < w,φ(xi) > −b) (11)

It can be shown that this minimum occurs when w =
∑

i αiγiφ(xi), where αi is a posi-

tive real number that represents the strength of training point xi in the final classification

decision. The subset of points where αi is non-zero consists of the points closest to the

hyperplane, and these are the support vectors. Since SVM is able to handle large feature

spaces, it is frequently used in many real world problems, even though it is computationally

expensive [58].
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CHAPTER 4 Application of Computer-Aided

Decision-Making System to Traumatic Injury Data

This chapter presents the results of predicting survival (alive/dead), exact outcome

(home/rehab), and ICU (Intensive care unit) days via rule generation. Results indicate

that the rule-based system can help physicians to make accurate decisions and explain

the reasoning behind them; this is expected to enhance patient care, and help derive new

knowledge from complex data patterns.

The chapter is organized as follows. Rules for predicting outcomes are generated using

three different trauma datasets. In Section 4.1 describes the dataset and examines rules

for survival and exact outcome. Section 4.2 focuses on predicting the number of days that

a trauma patient transported to hospital via helicopter will spend in the intensive care

unit (ICU). The last section follows prediction of exact patient outcome (home/rehab) via

classification of pelvic injuries, which is a novel clinical use of data. The importance of

filtering in the selection of significant variables is also addressed in this section.

4.1 Rules for Prediction of Survival and Exact Outcome

In this section, several important variables are introduced. The significance of compli-

cations and pre-existing disease in predicting the outcomes by comparing two different

datasets is explained. The performance comparisons between machine learning algorithms

are also presented, plus conclusion and discussion of the findings.

25



www.manaraa.com

26

4.1.1 Description of Dataset

Two different datasets are used in the study: on-site and off-site. The on-site dataset

collected contains data captured at the site of the accident; the off-site dataset contains

data at the hospital after the patient is admitted. The on-site and off-site datasets are used

to predict patient survival (dead/alive) and final outcome (home/rehab). The datasets are

provided by the Carolinas Healthcare System (CHS) and the National Trauma Data Bank

(NTDB).

On-site dataset: When making decisions based on the variables available at the accident

scene, one has to consider the unavailability of important factors such as pre-existing

conditions (comorbidities). Decisions must therefore be made without knowledge of these

factors. Some physiological measurements are also excluded because they are only collected

after arrival at the hospital. Table 1 presents the variables collected for this dataset, which

consist of four categorical and six numerical attributes.

Table 1: On-site dataset collected at the site of accident (* indicates the categorical
variables).

Variable Possible Values
Gender* Male, Female
Blunt* Blunt, Penetrating
ChiefComp* MVC, Fall, Pedestrian, Motorcycle Crash, etc
Position* Passenger, Driver, Cyclist, Motorcycle Passenger, etc
Age 0 ≤ Age ≤ 90
FSBP (Initial Blood Pressure) 0 ≤ FSBP ≤ 300
GCS (Glasgow Coma Score) 3 ≤ GCS ≤ 15
ISS (Total Injury Severity Score) 0≤ ISS ≤ 75
Pulse 0≤ Pulse ≤ 230
Respiration Rate 0≤ Respiration ≤ 68
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Off-site Dataset: The off-site dataset includes information on comorbidities and

complications, and contains some other physiological variables. A total of 1589 cases are

included in the databases: 588 fatal and 1001 non-fatal. The inputs include both cate-

gorical and numerical attributes. The predicted outcomes are defined as patient survival,

i.e. alive or dead, and the exact outcome for surviving patients, i.e. rehab or home. For

the exact outcome prediction, a total of 628 rehab cases and 213 home cases are used.

Table 2 presents the variables for the off-site dataset. Among the categorical variables,

“prexcomor” represents any comorbidities that may negatively impact a patient’s ability

to recover from the injury and any complication. Abbreviated Injury Scale (AIS) scores

for head, thorax, and abdomen are provided, as well as an overall score for patients with

multiple injuries. The range of AIS score values in our database is 1(minor injury) to 6

(fatal injury). Injury severity score (ISS) is the most widely used measure of injury severity

in patients with trauma and the range of possible values for ISS is 0 to 75. The range of

FURR (First Unassisted Respiratory Rate In ED) is between 0 and 99. EDRT indicates

a revised trauma score and its range is between 0 and 8. EDEYE (Lowest Glasgow Eye

Component in ED) is the value for eye response and ranges from 0 (eyes not opening) to 4

(eyes opening spontaneous ). EDVERBAL (Lowest Glasgow Verbal Component in ED) is

the value of patient’s verbal response, which ranges from 1 (no response) to 5 (oriented).

Glasgow coma score (GCS) is initially used to assess the patient’s level of consciousness

after trauma injury, and the score is used by first aid staff such as the emergency medical

services (EMS) and the physicians initially admitting all acute medical and trauma pa-

tients. It is also used in patient monitoring, for instance in intensive care. The maximum

GCS score is 15; a score higher than 13 is generally treated as a minor case, and a score
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less than 8 is considered a severe case.

Table 2: Dataset captured after hospital admission (* indicates the categorical variables).

Variable Alive Dead Rehab Home
Cases 1001 588 628 213
Male* 704 (70.3%) 404 (68.7%) 443 (70.5%) 150 (70.4%)
Female* 297 (29.7%) 184 (31.3%) 185 (29,5%) 63 (29.6%)
Age 41.2 ± 19.6 49.2 ± 24.1 39.6 ± 19.3 37.2 ± 16.6
FSBP 126 ± 33.4 119.3 ± 45.6 125.3 ± 31.6 124.5 ± 34.1
FURR 15.3 ± 10.9 13.9 ± 11.9 14.4 ± 11.1 18.2 ± 10.5
GCS 8.7 ± 5.3 27.5 ± 5.2 7.9 ± 5.2 10.5 ± 5.1
ISS 30.5 ± 12.8 35.3 ± 14.7 32 ± 13.2 27.1 ± 11.7
EDEYE 2.4 ± 1.4 2.1 ± 1.4 2.2 ± 1.4 2.8 ± 1.4
ED Verbal 2.7 ± 1.8 2.3 ± 1.7 2.4 ± 1.8 3.3 ± 1.8
EDRT 4.6 ± 3.2 3.8 ± 3.3 4.1 ± 3.3 5.7 ± 2.89
Head AIS 3.0 ± 1.6 3.6 ± 1.6 3.1 ± 1.8 2.5 ± 1.4
Thorax AIS 2.3 ± 1.7 2.4 ± 1.8 2.3 ± 1.8 2.4 ± 1.7
Abdomen AIS 1.1 ± 1.5 1.1 ± 1.6 1.0 ± 1.5 1.5 ± 1.7
Intubation* Yes/No
Prexcomor* 17 values: Acquired Coagulopathy, Chronic Alcohol Abuse, Chronic

Obstructive Pulmonary Disease, Congestive Heart Failure, Coronary
Artery Disease, Coumadin Therapy, Documented History of Cirrhosis,
Gastric or Esophageal Varices, Hypertension, Insulin Dependent, My-
ocardial Infarction, Non-Insulin Dependent, Obesity, Pre-existing Ane-
mia, Routine Steroid Use, Serum Creatinine > 2 mg (on Admission),
Spinal Cord Injury

Complications* Acute Respiratory Distress Syndrome (ARDS), Aspiration Pneumonia,
Bacteremia, Coagulopathy, Intra-Abdominal Abscess, Pneumonia, Pul-
monary Embolus

Safety* Seat Belt, None Used, Air Bag Deployed, Helmet, Other, Infant/Child
Car Seat, Protective Clothing

4.1.2 Results

The average accuracy of survival prediction, without any knowledge of pre-existing con-

ditions, is 73.9%, rising to 75.8% when this knowledge is included. It was discovered that

knowledge of these conditions appears at the highest level of the tree when using CART
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and C4.5, indicating their potential importance in the decision-making process. In par-

ticular, coagulopathy (a bleeding disorder), which can result in severe hemorrhage, may

be among the most important factors to consider in patients with Trauma Brain Injury

(TBI). Therefore, the off-site dataset, which contains comorbidity information, was used

for further prediction tests.

Since the total number of examples used for training is rather small and some low

accuracy rules may have been generated using the small number of examples, only rules

with at least 85% prediction accuracy on the testing sets are included in the rule base.

This threshold is chosen based on the recommendations made by trauma experts. All rules

are presented in Appendix A.

Significant Variables

In order to improve the rule quality and accuracy, it is essential to identify the key variables

in the dataset. In addition, shorter rules that are based on fewer, more significant variables

are more clinically useful for physicians. Logistic regression was used to extract these key

variables from the off-site datasets; the results are shown in Table 3. It can be seen

that nine important variables are identified. Mean and standard variation of the critical

variables and p values for the significance of independent variables are given.

Measuring Performance

The prediction results of five different machine learning methods are compared in Table

4. The performance for all algorithms is clearly superior when only significant variables

are used.

The exact outcome prediction results of five different machine learning methods when
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Table 3: Significant variables of off-site dataset (* indicates categorical variables). Cg
stands for Coagulapathy; MI for Myocardial Infarction; ARDS for Acute Respiratory
Distress Syndrome; ID for Insulin Dependent; EDRTS for Emergency Department Revised
Trauma Score; ISS for Injury Severity Score.

Variable P-value Mean ± S.D.
AIS Head <.0001 3.25 ± 1.64
AIS Thorax 0.003 2.33 ± 1.78
ID* 0.02 -
MI* <.0001 -
ARDS* <.0001 -
Cg* <.0001 -
Age <.0001 44.15 ± 21.70
EDRTS 0.03 12.10 ± 16.03
ISS 0.01 15.82 ± 19.03

Table 4: Performance comparison of five machine learning methods with survival predic-
tion.

Logistic AdaBoost C4.5 CART SVM
All Variables 69.4% 70% 68% 75.6% 73%
Significant Variable only 72.9% 73% 75.2% 77.6% 79%

using only significant variables are compared in Table 5. For this prediction of Table 5,

no attempt was made to use all available variables, since the survival prediction test has

already confirmed improved performance when using only significant variables.

Table 5: Performance comparison of five machine learning methods with exact outcome
prediction.

Logistic AdaBoost C4.5 CART SVM
Significant Vars. only 74.6% 73% 72% 75.6% 72.6%

Discussion with physicians revealed that all generated recommendations and predic-

tions should ideally be transparent in their reasoning; our system therefore uses CART



www.manaraa.com

31

and C4.5 are used to predict patient survival. If physicians understand the reasoning be-

hind decisions and it follows their own, their confidence in the system may be increased.

If the system’s reasoning is clinically meaningless, they can choose to disregard the rec-

ommendation; however, if the reasoning has some clinical merit, this may alert them to

previously hidden factors affecting patient outcome. In summary, the reasoning can con-

firm the physicians’ initial conclusion as well as alert them to interesting new information

that may improve patient care.

The most reliable rules (>=85%) and supporting rules (between 75% and 85%) are

presented in Appendix A (for survival) and Appendix B (for exact outcomes). There are

two reasons for including rules with accuracy between 75% and 85%. Firstly, the accuracy

of a rule may be low due to the lack of a truly complete database, rather than a flaw in the

rule itself. Secondly, even though a rule may have low accuracy, it might include knowledge

of hidden relationships between variables. For example, most trauma experts consulted

that a patient with an ISS score over 25 would have little chance of survival. However, the

survival probability might be higher for a patient with a high ISS score, and lower head

and thorax AIS score, an appropriate and prompt treatment is provided. Therefore, those

rules with accuracy between 75% and 85% are used as additional “supporting rules” in

suggesting possible treatment. This issue is addressed further in the section 4.1.3. In this

case, the algorithms were tested using only significant variables.

4.1.3 Discussion

A computer-aided rule base was developed using significant variables selected via logistic

regression, and it is shown that this filtering step increases rule quality. The intention was
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to extract and formulate medical diagnostic knowledge into an appropriate set of trans-

parent decision rules that can be used in a computer-assisted decision making system. By

comparing the performance of five machine learning algorithms - AdaBoost, C4.5, CART,

SVM, and logistic regression - using all available variables and significant variables only, it

was found that using only the most significant variables provides a considerable improve-

ment in performance. All five methods show improvement using significant-variables-only,

indicating that the proposed feature selection method is robust and efficient.

The performance of individual rules was also measured. Reliable rules were identified

as those with accuracy above 85%. In addition, all selected rules were considered reliable if

the number of cases in the dataset matching the rule was higher than a specified threshold.

Rule sensitivity and specificity were also measured, and the average sensitivity and speci-

ficity for the two outcome pairs (alive/dead, home/rehab) of over 85% accuracy rules are

87.4% and 88.4%, respectively. Also, average sensitivity and specificity of rules between

75% and 85% of them are 82.6% and 80.3%. This attests to the successful performance

of the proposed method. Some additional improvements may be needed to improve rule

quality. In particular, large and well balanced datasets across all outcome classes could

improve overall quality, as well as sensitivity and specificity measures.

One important issue in rule selection is how to deal with rules having accuracy below

85%. When using only the over-85% rules, some medical knowledge or interesting patterns

in the database may be ignored. The accuracy of a rule may be low due to the lack of

“database completeness”, rather than a flaw in the rule itself. Therefore, rules with less

than 85% accuracy cannot be completely removed from the rule based system.

Some rules were found which had surprising implications. For example, according to
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trauma experts, patients with a high ISS score (>25) are least likely to survive. One of

the “counterintuitive” rules pointed to the fact that there are 52 alive cases (3.3%) with

high ISS scores (≥38). Of these 52 patients, 33 (63.5%) have high AIS head scores (>=4),

and 38 patients (73%) are male. Considering the above conditions, surviving patients

have lower thorax (average score=2.61) and lower abdomen AIS scores (average score =

1.03) than fatal cases. The fatal cases typically have a higher head AIS score (average

core=5.08) than surviving patients (average head score=3.90).

In addition, it was found that none of the surviving patients had complications such as

coagulopathy, and only a few had a pre-existing disease (in particular, Insulin Dependency

and Myocardial Infarction). While only Acute Respiratory Distress Syndrome (ARDS) is

usually considered an impact factor in predicted survival, according to the created rules,

Insulin Dependency, Myocardial Infarction, and Coagulopathy also have significant impact.

4.1.4 Conclusion

The results provide a framework to improve physicians’ diagnostic accuracy with the aid

of machine learning algorithms. The resulting system is effective in predicting patient

survival, and rehab/home outcome. A method has been introduced that creates a variety

of reliable rules that make sense to physicians by combining CART and C4.5 and using

only significant variables extracted via logistic regression. The resulting computer-aided

decision-making system has significant benefits, both in providing rule-based recommen-

dations and in enabling optimal resource utilization. This may ultimately assist physicians

in providing the best possible care to their patients. The diagnosis of future patients may

also be improved by analyzing all possible rules associated with their symptoms.
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4.2 Rules for Prediction of Expected Time to Stay in Intensive Care Unit
(ICU) for Airlifted Patients

This section focuses on predicting the number of days that a TBI patient, who is trans-

ported to hospital via helicopter, will spend in the intensive care unit (ICU). Based on

the literature, many airlifted patients leave the hospital and/or the ICU on the same day

the injury occurs. This puts financial burden on patients and/or the healthcare system as

such patients do not truly need helicopter transportation. The ability to successfully pre-

dict the injury severity further emphasizes the impacts of computer-aided decision making

systems on the care provided to patients as well as the cost effectiveness of trauma care.

This section organized as follows. First, the significance of ICU prediction for the he-

licopter dataset is explained in Section 4.2.1 and the dataset itself is explained in Section

4.2.2. Experiment results are presented in Section 4.2.3, followed by the discussion and

conclusion.

4.2.1 Introduction

It has been reported that traumatic brain injuries are the most expensive affliction in the

United States, with an estimated cost of $224 billion per year [2]. Since the treatment of

traumatic brain injuries is extremely time-sensitive, it is widely believed that the predicted

length of stay in the ICU should be an important consideration when deciding on the

patient transport method (i.e. ambulance or helicopter). Critically injured patients are

expected to spend more time in the ICU, and also stand to benefit the most from helicopter

transport. Studies have emphasized the impact of helicopter transportation on trauma

mortality rates, since the speed of ambulance transport is limited by road and weather
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conditions, and may also be constrained by traffic congestion. Cunningham [36] attempts

a comparison based on the outcome of the treatment given to trauma patients. Based

on this study, patients in critical condition are more likely to survive if transported via

helicopter. However, the high cost of helicopter transport remains a major problem [128].

Comparison of ground and helicopter transportation and the corresponding care provided

to the patients is a challenging task. While helicopter transportation can provide potential

benefits for time-dependent patients, the cost and the risk of an accident are both lower

for ground transportation [13, 73].

Gearhart [61] evaluated the cost-effectiveness of helicopter transport for trauma pa-

tients, and found that the average cost of helicopter transport is approximately $2,214

per patient, and $15,883 for each additional survivor [61]. Ultimately, the cost is almost

$61,000 per survivor for trauma patients. However, Eckstein [43] states that 33% of pa-

tients who are transported by helicopter are discharged for home from the emergency

department, rather than being sent to ICU. This indicates that a significant number of

trauma patients transported by helicopter actually have relatively minor injuries. This

emphasizes the necessity of a well-identified transportation policy based on the patient’s

condition and predicted outcome.

4.2.2 Description of Dataset

This dataset, provided by the Carolinas Healthcare System (CHS), is based on the records

of patients who were transported to the CHS hospitals by helicopter. The variables are age,

gender, blood pressure, airway (all types of device used to assist patients with breathing),

pre-fluids (the amount of blood provided to the patients), GCS, heart rate, respiration
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rate, ISS (Injury Severity Score), and ISS-Head&Neck. Age, blood pressure, GCS, pulse

rate, ISS-Head&Neck, ISS, and respiration rate are classified as numerical variables. The

final outcome is the number of days spent in ICU, as this is considered the most informative

measure when deciding the means of transport to hospital.

The use of a relatively small dataset with so many outcomes may result in a complex

model that is hard to explain and understand. Pfahringer [114] addresses the benefits of

using discretization of continuous attributes including significant improvements of smaller

sizes of trees, and improved prediction accuracy. Thus, in this study, the dataset was

categorized into two groups. The non-severe group contains patients who stayed in the

ICU less than 2 days (ICU stay <= 2 days). The severe group consists of patients who

stayed in the ICU more than 2 days (ICU stay >=3 days). This threshold on the number

of ICU days, as a criterion of injury severity, was chosen based on discussion with trauma

experts. In total, the dataset contains 497 cases: 196 severe and 301 non-severe. Table 6

describes the helicopter dataset in more detail.

As mentioned in Chapter 3, all categorical variables are replaced by multiple dummy

variables with two levels (Yes/No). Since a small dataset with many attribute levels may

result in bias, the twelve-value airway variable is divided into two groups: not needed (i.e.

not performed) and needed (all other levels).

4.2.3 Results

This section presents the results when using only significant variables, and explains the

quantitative measures used.
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Table 6: Detail description of Helicopter dataset (* indicates categorical variables).

Variable Severe (ICU stay > 2 days) Non-Severe (ICU stay ≤ 2 days)
Cases 301 196
Male 201 (66.8%) 132 (67.3%)
Female 100 (33.2%) 64 (32.7%)
Age 30.6 ± 16.6 32.9 ± 17.2
FSBP 137.7 ± 23.2 127.6 ± 28.0
GCS 11.7 ± 4.87 6.47 ± 5.01
ISS 14.2 ± 8.1 23.7 ± 9.47
Pulse 101.4 ± 22.3 108.2 ± 26.6
Resp. Rate 15.6 ± 9.44 6.45 ± 1.6
ISS-HN 2.83 ± 0.86 3.46 ± 0.91
Airway* need/no need
pre-fluids* <500,500-1000,>2000

Significant Variables

Out of the ten variables included in the helicopter dataset, only three are identified as sig-

nificant: age (p-value <0.0001), blood pressure (p-value=0.0078), and ISS (p-value=0.0034).

The above significant variables are found using the feature selection process in CUSF de-

scribed in Chapter 3. Since the scale of the data is small, and ISS is not typically measured

at the scene, other variables were included in the model based on the suggestions made by

participating physicians. These physicians selected age, GCS, blood pressure, pulse rate,

respiration rate, and airway as important factors.

Measuring Performance

Table 7 presents the accuracy of the predicted number of days spent in the ICU for the

helicopter dataset. In this case, only the significant variables were used. No attempt

was made to use all available variables, since the survival prediction model in Chapter

4.1 already confirmed that using only the significant variables improves accuracy and
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performance.

Table 7: Prediction results for ICU days.

Method Logistic AdaBoost C4.5 CART SVM
Days in ICU 80.6% 78.7% 77.1% 77.4% 80.1%

According to the Table 7, logistic regression, AdaBoost, and SVM are outperformed

CART and C4.5. However, as mentioned in Chapter 2, these methods lack the facilitation

of understanding for medical professionals. Physicians are more likely to believe in rules

when they can understand the reasoning. SVM does not provide the rules and does not

have the ability to handle missing values. Thus, CART and C4.5 are used for rule gener-

ation, and rules with over 85% accuracy are selected as reliable rules; this threshold was

determined via discussion with physicians. The most reliable generated rules (>= 85%)

are presented in Appendix C. The sensitivity and specificity of the rules are 90.6% and

91% respectively. High sensitivity and specificity values indicate that the rules are well

classified for predicting the ICU days.

4.2.4 Discussion

Providing rapid care to critically injured patients is essential to improve their chance of

survival. Many studies support the use of helicopters and state that the use of an air

ambulance can reduce patient mortality. However, helicopter transportation is expensive

and risky. Thus, effective usage of air ambulances requires a policy that takes into account

the severity of a patient injury. Through the analysis and classification of patient data, the
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developed rule-based system may assist in predicting which patients should be transported

by air.

Airway status (needed/not needed) was identified as a primary factor in predicting the

number of ICU days for patients transported via helicopter. Note that 74.6% of patients

spent 2 days or less in the ICU. Only 25.4% of patients stayed more than 2 days, and only

2.9% of those were in the ICU for more than 20 days. This reinforces Eckhart’s [43] point

that many patients are transported via helicopter unnecessarily.

Therefore, the use of rules for accurate prediction of ICU length of stay may improve

the efficiency of helicopter transport, in terms of both cost effectiveness and critical patient

care.

4.2.5 Conclusion

Even though helicopter transport has many advantages, a policy needs to be devised for

the use of helicopter transport. Therefore, a rule-based system was designed that predicts

the expected number of days a patient will spend in the ICU. This system predicts expected

days in ICU specifically for trauma patients. To validate the system, quantitative analysis

is performed to calculate the accuracy and significance.

While comprehensive testing using a larger dataset is still required, the method was

shown to be capable of extracting accurate and meaningful rules which support making

fast and reasonable decisions using the available patient information. Finally, the validity

of the rules has been confirmed via discussion with physicians.
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4.3 Rules for Prediction of Exact Outcome in Traumatic Pelvic Injury

This section focuses on prediction of exact patient outcome (home/rehab) via classification

of pelvic injuries, which is a novel and clinically useful data set. The importance of filtering

in the selection of significant variables is also addressed.

The rest of this section is organized as follows. Section 4.3.1 provides a brief intro-

duction, including the significance of studying pelvic injuries. The dataset is described

in Section 4.3.2. Comparison results are then presented in Section 4.3.3. This section

concludes with discussion of the results.

4.3.1 Introduction

Traumatic pelvic injuries are often associated with severe, life-threatening hemorrhage,

and immediate medical treatment must therefore be provided to reduce mortality and

the risk of serious complications. Pelvic injuries are critical injuries because they are

associated with a number of complications that often require extensive rehabilitation.

Although pelvic fractures are uncommon injuries which affect approximately 3%-8% of

trauma patients, they have a relatively high mortality rate (5%-20%) due to the risk of

severe hemorrhage [115]. Pelvic fractures therefore represent a significant contribution

to mortality rates, [96, 113], where most deaths are caused by complications, such as

hemorrhaging and secondary multiple organ failure, rather than the fracture itself [42, 67].

Most serious pelvic injuries occur due to high-speed impact, including motor vehicle-

pedestrian accidents, crash injuries, and falls, with an average patient age of 31.5 years [110].

Rapid assessment and diagnosis are important to improve patient survival. However, it is
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sometimes difficult for physicians to decide on appropriate treatment, due to the similarity

and complexity of the various types of injury. A rule-based computer-aided system was

developed to predict the exact outcome (home or rehabilitation) for pelvic trauma patients.

4.3.2 Description of Dataset

The traumatic pelvic injury dataset used in this study was created in collaboration with

Carolinas Healthcare System and Virginia Commonwealth University. The database con-

tains not only demographics and physiological data but also trauma scores. These can be

taken either at the site of the accident or at the hospital. All medical tests and procedures

(e.g. blood transfusion) performed at any stage are also included in the database. Table 8

presents all the available input variables. In Table 8, GCS refers to Glasgow Coma Score,

BP refers to blood pressure, and ED is used to note values collected at the emergency

department rather than the scene of the accident.

As Table 8 shows, there are twenty variables in the pelvic injury dataset, including

all possible scene and revised emergency department (ED) values. The variables are fed

to the model as the input, and the output of the model is treated as the exact outcome

of the treatment. The outcomes are therefore grouped into two classes: rehabilitation or

home. A total of 681 surviving cases were used in this study, consisting of 381 patients

sent home and 300 sent to rehabilitation. As described in Chapter 3, every categorical

variable is replaced with several dummy variables.

Many researchers have identified Glasgow Coma Score (GCS) and Injury Severity Score

(ISS) as important factors used by experts to decide on treatment [42, 39, 89, 126]. There-

fore, those two factors are included as significant variables by default.
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Table 8: Summary of all available input variables (* represents categorical variables and
mean SD are represented for numerical variables).

Outcomes
Variable Home Rehab
Total Dataset 381 Cases 300 Cases
Male 238 (62.5%) 180 (60%)
Female 143 (37.5%) 120 (40%)
Age 35.57 ± 13.98 46.56 ± 17.54
Scene BP 125.1 ± 27.53 125.49 ± 32.98
Pre-Hospital Eye score 3.77 ± 0.68 3.30 ± 1.20
Scene GCS 14.01 ± 2.51 12.26 ± 4.47
Scene Motor 5.68 ± 1.01 4.97 ± 1.88
Scene Pulse 98.25 ± 22.71 102.08 ± 22.11
Scene Respiration 20.58 ± 4.92 19.22 ± 7.92
ED Blood Pressure 129.83 ± 22.51 127.10 ± 27.25
ED GCS 13.57 ± 3.57 11.75 ± 4.97
ISS 16.52 ± 9.10 21.68 ± 9.97
Chief Complaint* MVC, Pedestrian, Mtrcycle, Crash, Accident, Fall, Struck, GSW,

Machine, Bicycle, Assault, ATV, Animal, Aircraft
Position Driver, Pedestrian, Passenger, Pedal Cyclist, Motorcycle Driver,

Motorcycle Passenger
Pre-Hospital Fluids* <500, IVF Unk. Amount, Not Performed, 500-2000, >2000, IVF

Attempted
Scene Needle Thorax* Performed, Not performed
ABD. U/S* Positive, Negative, Not performed
ABD CT* Positive, Negative, Not performed
Chest CT* Positive, Negative, Not performed
Head CT* Positive, Negative, Not performed
Diagnosis type* Open fracture of pubis, Closed fracture of ilium, Open fracture of

ilium, etc

4.3.3 Model Selection Comparison

This section compares the significant variable selection methods. Specifically, stepwise

model selection method and the feature selection process in CUSF are quantitatively com-

pared. The stepwise model selection method, described in Chapter 3, is commonly used in

medical data analysis to find models incorporating the best subset of input variables that
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successfully predicts the outcomes, considering all possible combinations of independent

variables. As part of the process, any single predictor variable may be added or deleted

and the starting subset is typically the empty set.

There are major issues with using stepwise model selection for rule based decision-

making application. Although the method is designed to find important variables, it may

not guarantee choosing the most relevant attributes due to its repetition of the add and

delete steps, as mentioned in Chapter 3 [100].

To compare the two model selection methods, CUSF and stepwise, the outcome, length

of stay in ICU as a measure of severity for the pelvic injury patient dataset. The outputs

are grouped into two classes: non-severe cases (2 or fewer days spent in ICU days) and

severe cases (3 or more days spent in ICU). A total of 764 cases are used: 491 non-severe

and 273 severe.

Using the stepwise method, age (p-value=0.0026), ED GCS (p-value < 0.0001), and

ISS (p-value < 0.0001) are selected as a significant variables. When using the feature

selection of proposed approach, CSUF, age (p-value=0.0003), gender (p-value=0.0279),

ED GCS (p-value=0.0160), and ISS (p-value=0.0165) are selected as the most significant

variables.

In terms of performance, the stepwise model selection has 83% training accuracy and

68.8% testing accuracy, whereas the same values for CUSF are 83.8% and 70%, respec-

tively.

The two model selection methods were compared using the traumatic brain injury

dataset given in Table 2 and Table 8. Table 9 presents the results of comparison between

CUSF and the stepwise model selection.
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Table 9: The performance comparison between the proposed approach (CUSF) and step-
wise.

C4.5 CART SVM AdaBoost
CUSF Stepwise CUSF Stepwise CUSF Stepwise CUSF Stepwise

Survival Dataset 71.2% 68.7% 71.7% 69.6% 73% 69.9% 73.2% 70.9%
Pelvic Dataset 67.4% 65.7% 69.7% 65.2% 68.6% 67.6% 68% 66.6%

The results show that the proposed feature selection, CUSF, has better performance

than stepwise selection. Non-medical datasets are also tested in Chapter 5 to validate the

results. Also, statistical test, specifically Friedman test, will perform to test the signifi-

cance of the difference between the two methods on medical and non-medical dataset in

Chapter 5.

4.3.4 Exact Outcome Prediction

It was found that age (p-value < 0.0001), pre-fluids (p-value=0.0317), and chest CT

(p-value=0.0311) are all significant variables for predicting the exact patient outcome

(home/rehab). Figure 5(a) shows the relationship between patient age, ED GCS, and ISS

for the two outcomes. Figure 5(b) provides the same information for age, ED BP, and

ISS.

Figure 5 (a) shows good separation of outcomes (home/rehab), but the lack of separa-

tion in Figure 5 (b) suggests that ED BP is not a significant feature for our application.

Based on Figure 5, it is apparent that patients who are discharged to rehab are typically

much older and have a higher ISS than those who are sent home. Also, when ED GCS

values are the same, rehab patients have a higher ISS score than home outcome patients

in 41% of cases. These observations support the filtering done by the significant variables
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(a) (b)

Figure 5: 5(a) Relation between age, ED GCS, and ISS 5(b) Relation between age, ED
BP, and ISS .

selection process.

Table 10 compares the results of each machine learning algorithm except logistic re-

gression on the testing sets. According to Table 10, none of the machine learning methods

offers a significantly higher accuracy than the others. This indicates that the variable

selection method, as described in Chapter 3, provides an efficient and appropriate process

in filtering the input space. This observation also suggests that the variable selection step

may have a significant impact on predicting the outcome. Table 10 shows that logistic re-

gression outperforms the other methods. Based on this result, it was found that CART has

marginally higher accuracy than other machine learning algorithms in predicting outcomes

for the pelvic dataset.

Table 10: Performance comparison using pelvic dataset to predict exact outcome
(home/rehab).

Method Logistic AdaBoost C4.5 CART SVM
Accuracy 71.8% 68% 65.3% 69.7% 68.6%
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Rules with over 85% accuracy are selected as reliable rules; this threshold was deter-

mined via discussion with physicians. Only these rules are incorporated into the final rule

base. In total, twenty-seven CART and seven C4.5 reliable rules were generated and the

average rule accuracy is 90.4%. The sensitivity and specificity of the rules were calcu-

lated as 87.5% and 90.7% respectively. The most reliable generated rules (>= 85%) are

presented in Appendix D. High sensitivity and specificity values indicate that the rules

constructed using the pelvic injury dataset are well classified. The final rules are trans-

parent to physicians; as discussed previously, this is a desirable quality, as it allows them

to understand the reasoning behind the predictions made by the computer-aided system.

4.3.5 Discussion

This work is intended to solve the problem of formalizing medical diagnostic knowledge

so it may be transferred into an appropriate computer system, using transparent methods

that can be easily understood by physicians. This method also addresses a current problem

in the medical application domain, specifically, how to deal with the many predictors that

make variable selection difficult.

Interestingly, gender proved to be a significant variable in predicting the exact outcome

(home/rehab). In the dataset, 415 out of 681 patients are male (61%) with an average

age of 40. Also, comparing the average intensive care unit (ICU) days for home and rehab

outcomes, the length of stay for rehab outcome patients is five times longer than the stay

for those patients sent home (home: 1.77± 5.06, rehab: 8.63± 11.1). However, 16% of

home outcome patients stayed more than 2 days in ICU and 43% of rehab outcome patients

stayed less than 2 days, contrary to expectations. This illustrates the need for computer-
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aided decision making in both treating patients and in considering cost effectiveness.

Based on the ANOVA test, two values - GCS at the scene (p-value < 0.0001) and

EDGCS (p-value < 0.0001) - are important factors in predicting the exact outcome

(home/rehab). However, when using logistic regression it was found that only the EDGCS

value is significant. In addition, a statistical t-test was performed to compare the scene

and ED GCS scores. The resulting p-value of 0.04 is significant, as it is relatively high

when using 5% as the confidence level. This indicates that the GCS measurements at the

two different locations are typically quite different. It should be noted that for 352 cases

out of 681 (51.7%) the GCS is not measured at the scene and for 16 cases out of 329 (4.9%)

there is a large difference (>=7) between scene GCS and ED GCS (typically the value at

the scene is higher than the value at the ED). This reinforces the importance of filtering

in the selection of significant variables.

A limitation of this study is the small size of the dataset used to generate the rules.

However, the model goodness-of- fit test indicates that despite its size, the dataset is still

suitable.

4.3.6 Conclusion

In this section, a computer-aided system has been designed which aids physicians in making

fast and accurate decisions for trauma injury cases. The system uses machine learning

algorithms, specifically decision tree algorithms, to assist physicians in the decision-making

process. Using this rule-based system, the most similar existing case to a new patient

can be found in order to recommend a suitable treatment. As a next step, it is intend

to integrate all available heterogeneous patient information during the decision-making
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process by extracting diagnostically significant features from images and signals. These

are very important measures such as the exact radius of the pelvis ring after the injury

which are not easily visible to human eyes.
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CHAPTER 5 Testing & Validation Using Non-Medical

Datasets

This section presents the results of testing and validation of CUSF using important

applications. These tests further validate the applicability of CUSF for modeling of com-

plex datasets. Decision tree algorithms are used as machine learning methods to produce

and compare results on three different datasets, as described below.

5.1 Description of Datasets

Census-income Dataset

The income dataset was obtained from the UCI machine learning Repository [15]. The

data consists of a binary classification to determine income level, with 33 input attributes

and 1400 examples. Of these, 433 cases have under 50K income, and 966 have over 50K

income. Of the attributes, 12 are numerical, including age, wage per hour, gross income,

and dividends from stock and 21 are categorical, including gender, education, and own

business or self employed. Also, a few variables are missing. A detailed description about

the attributes are presented in Appendix E. For reliable estimation, 10-fold cross validation

was used in testing.

University Dataset

The university dataset was obtained from the UCI machine learning Repository [15]. The

data consists of a binary classification to predict the number of applicants, with 14 input

49
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attributes including 10 numerical such as verbal SAT score, math SAT score, and expenses

and 4 categorical variables such as major and control. Among the attributes, university

name, state, and location are removed for testing. Detailed descriptions of the attributes

are presented in Appendix E. A total of 269 examples are used. Some missing values were

included. Again, 10-fold cross validation was used.

Credit Approval Dataset

This dataset was obtained from the UCI machine learning Repository [15]. The data con-

sists of a binary classification concerning credit card approval, with 15 input attributes

consisting of 6 numerical and 9 categorical variables. In the original database, all attribute

names and values have been changed to meaningless symbols to protect the confidentiality

of the data. A total of 690 examples are tested with 10-fold cross validation. The class

distribution of the data contains 307 positive examples and 383 negative examples. Ap-

proximately 5% of values are missing.

5.2 Comparison of Results

This section presents the results when using the non-medical datasets to test the proposed

approach,CUSF. Table 11 compares the results of CUSF and the stepwise feature selection

method.

According to Table 11, CUSF is slightly better than stepwise feature selection. Table

12 presents the results for the area under the ROC curve.

Considering the accuracy and the area of ROC curve analysis, the CUSF presents bet-

ter performance than the stepwise with decision tree algorithm. Non-parametric statistical
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Table 11: Performance comparison results between CUSF approach and stepwise.

Method
C4.5 CART

CUSF Stepwise CUSF Stepwise
income 83.3% 82.4% 84.3% 82.6%
university 81.8% 81.1% 82.5% 79.2%
credit approval 87% 84.7% 85.5% 85.2%

Table 12: The area under ROC curve analysis between CUSF approach and stepwise.

Method
C4.5 CART

CUSF Stepwise CUSF Stepwise
income 0.87 0.86 0.88 0.85
university 0.82 0.81 0.82 0.79
credit approval 0.9 0.89 0.89 0.86

test, Friedman test, is performed on both medical and non-medical dataset (i.e. the results

of CART and C4.5 in Table 9 and Table 11). Since insufficient non-medical datasets are

used for testing, the medical dataset is also included when performing the Friedman test.

Based on Friedman test (p value=0.002), it was found that the difference between the

performance of CUSF and stepwise selection method is significant.

5.3 Discussion

This section describes the validation of CUSF. Three non-medical datasets are used, with

10-fold cross validation for testing. In contrast to the medical dataset, the non-medical

datasets have less than 5% missing values and fewer categorical variables.

In many fields of study, the stepwise method is commonly used for selecting the best
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subset of variables for outcome prediction. However, it requires additional computation to

find the best model. Furthermore, in the medical field it may not include some important

variables which physicians believe critical to determine the outcome, such as age. This

is due to its add and delete approach to variable selection, which can lead to any vari-

able being dropped from the model based on the subset model significance. The proposed

method may especially useful for medical datasets due to the nature of medical data - such

as the higher proportions of missing values and categorial variables. However, according

to the comparison results of the Section 3 in Chapter 4 and this chapter, the proposed

feature selection method may also be useful for non-medical datasets.

5.4 Conclusion

The results show that the proposed approach (CUSF) is slightly better than stepwise

selection. The proposed approach may be better, when combining it with decision tree

algorithms.
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CHAPTER 6 Heart Rate Variability (HRV) Analysis Using

Signal Processing

This chapter introduces heart rate variability analysis (HRV), which can provide useful

information in identifying the degree of bleeding using signal processing methods. Since

blood loss and physical activity have similar HRV responses in human subjects, differ-

entiating between the two conditions has become of increasing importance and interest,

particularly in military applications. This chapter presents a signal processing approach,

specifically using wavelet transformation analysis, which can be employed to distinguish

the two conditions.

The rest of this chapter is organized as follows. First, background and a description

of a previous heart rate variability study are provided in Section 6.1 and 6.2 respectively.

Then the objective of this study is presented in Section 6.3. Section 6.4 describes the

dataset, and methodology is presented in Section 6.5, starting with ECG segmentation.

The results are presented in Section 6.6. Finally, conclusions and discussion are provided

at the end of the chapter.

6.1 Introduction

Hemorrhage shock is the most critical life-threatening factor in battle injuries, and the

relationship between hemorrhage and outcome for trauma patients has long been a topic

of interest for study. Failure to promptly identify hemorrhage shock (HS) cases can prove

53



www.manaraa.com

54

fatal. In one study of the Israeli military, 96% (351 out of 337) of patient fatalities occurred

in the first four hours, typically due to blood loss [134, 159]. Both these rapid deaths and

the many complications associated with the injury result from a lack of appropriate medical

attention and limited evacuation facilities in the field [8]. 90% of combat field deaths occur

before the patient can reach medical care. Thus, the treatment of battlefield injuries is

extremely challenging, and fatalities within the first four hour of wound occurrence are

highly dependent on battlefield conditions [164]. Moreover, the likelihood of death depends

on a number of factors, such as the severity of hemorrhagic shock, the time delay, and

the type of treatment provided. Thus, monitoring the health status of combatants using

easily obtained signals such as heart rate variability remains a critical challenge.

Heart rate variability (HRV) is a non-invasive measurement of cardiovascular auto-

nomic regulation. Recently, analysis of HRV from electrocardiography (ECG) recording

has become a popular method for assessing activity of the autonomic nervous system.

Several papers over the past 20 years have emphasized the significant relationship be-

tween HRV and cardiovascular mortality [30, 32, 33, 35, 133, 45]. Monitoring heart beat

fluctuations appears to provide valuable information concerning cardiovascular and neu-

rological diseases, as well as physical and mental stress. In particular, heart variability in

cardiovascular activity, such as RR interval (described in Section 6.5.3), has been widely

studied as a measure of cardiovascular function that can be used in both risk estimation

and diagnosis of cardiac events.



www.manaraa.com

55

6.2 Existing Methods for Heart Rate Variability Analysis

There are two main traditional approaches for HRV analysis; time domain analysis of HRV

for standard deviation of normal to normal intervals, and frequency domain analysis for

power spectrum density (PSD) using simple electrocardiograms (ECG). Previous studies

[7, 125, 104] have demonstrated that PSD analysis is a good non-invasive tool for exami-

nation of the cardiovascular system, and it is currently the most popular linear technique

used for studying HRV signals [7, 116, 160]. PSD analysis provides three bands: high

frequency (HF: 0.15-0.5 Hz), low frequency (LF: 0.04-0.15 Hz), and very low frequency

(VLF: 0.0033-0.04 Hz). However, PSD estimation methods are unsuitable for analyzing

series whose characteristics change rapidly [125, 98, 104].

The importance of biological time series analysis in describing complex patterns has

been studied over a long period. The nonlinear dynamic techniques used are used based

on the concept of chaos theory and have been applied to many areas, including medicine

and biology [7, 130]. Thus, the physiological phenomena of HRV have been characterized

by fractal properties and prior studies have emphasized fractal dimension (FD) analysis, a

useful tool in the identification of complex biological systems under different conditions [78,

95, 163, 155]. Previous studies state that FD analysis can reliably identify heart disease,

as the irregularity of HRV causes abnormal cases to have greater fractal complexity than

normal cases [48, 76, 4].

Lower body negative pressure (LBNP) is widely used as a human demonstration model

for studying acute hemorrhage analysis [33, 23]. Several preliminary studies [16, 18, 31,

34, 32, 33, 140] have found that HRV becomes lower and more persistent with an increase
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in negative pressure and that LBNP is a useful model to simulate acute hemorrhage in

humans, since both induce similar physiological responses. Also, Convertino [31] and

Stevens [140] have confirmed that lower body negative pressure (LBNP) is a useful tech-

nique to study cardiovascular activities and hemodynamic effects associated with severe

hemorrhage shock in humans, in particular in combat settings. Comparisons between

physiological response of LBNP and blood loss have demonstrated that some amount of

blood loss and LBNP cause a similar physiological reactions.

However, several studies [140, 129, 106, 51, 68, 123, 124] of physical activity have found

that exercise and LBNP generate similar physiological effects. Heidi et. al [68] studied

heart activity during different activity states, and found that RR intervals also decrease

significantly during exercise and other vigorous activity.

Therefore, the differentiation between two conditions, blood loss and exercise, is vital

for better early identification of bleeding, especially in military applications. Currently,

power spectral density (PSD) and fractal domain (FD) are being studied and advocated

as a means to detect sensitive HRV changes due to HS. Unfortunately, traditional HRV

analysis appears to be unable to distinguish between central volume loss and exercise.

This is problematic given the desire to use changes in heart rate to detect the presence of

acute volume loss due to hemorrhage.

6.3 Specific Aims

This study proposes a new method (based on wavelet transformation) to distinguish HRV

between different electrocardiogram (ECG) data for LBNP and physical activity. The
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hypothesis under test is that wavelet transformation analysis can distinguish between

LBNP and physical activity subjects, whereas fractal dimension (FD) and traditional

power spectral density (PSD) analysis cannot. Therefore, the specific aims for this study

are as follows:

1) To propose an algorithm based on a set of novel wavelet features to analyze complex

signals, such as Electrocardiograms (ECGs), that can provide important information

typically invisible to human eyes. This wavelet-based method is referred to as Signal

Analysis Based on Wavelet-Extracted Features (SABWEF). The algorithm extracts

information that can be used to detect and analyze complex patterns.

2) To compare traditional methods of signal processing and SABWEF for discovering

hidden patterns from complex signals using statistical analysis.

3) To assess the success of SABWEF in analyzing ECG, in particular to apply SABWEF,

combined with machine learning algorithms, to estimate of the severity of blood loss.

4) To assess the success of SABWEF in analyzing multiple signals, in particular, to apply

SABWEF, combined with machine learning algorithms, to four signals, ECG, arte-

rial blood pressure (ABP), and impedance signals (IZT, and DZT), to predict the

severity. Also, to assess the improvements in prediction of severity of blood loss by

analyzing four signals rather than analyzing only ECG.

5) To assess the success of SABWEF in analyzing signals other than ECG, such as gait

aging signal.
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6.4 Description of Dataset

The dataset comprises fifty-nine subjects from the US Army Institute of Surgical Research,

including forty-six LBNP subjects and thirteen exercise subjects. LBNP testing is done

using a chamber in which the subject is exposed to varying levels of negative pressure.

All measures are either continuously monitored or semi-continuously monitored at regular

intervals. If the subject becomes distressed, he can request termination of the test, or end

the test himself using a switch located on the LBNP device. Table 13 presents the detail

dataset information containing LBNP and exercise subjects as well as the monitoring

timeframe for the LBNP protocol.

Table 13: Summary of dataset including LBNP and exercise subjects 13(a), and monitoring
schedule for lower body negative pressue (LBNP) protocol 13(b).

(a)

LBNP Exercise
Collapse Subject Collapse Subject
Stage Number Stage Number

3 5(10.8%) 5 2(15.4%)
4 18(39.1%) 6 11(84.6%)
5 12(26.1%) - -
6 9(19.6%) - -
7 2(4.4%) - -

Total 46 subject 13 subject

(b)

LBNP Protocol Stage Time
0 mmHg Baseline 5 min
-15 mmHg Stage 1 5 min
-30 mmHg Stage 2 5 min
-45 mmHg Stage 3 5 min
-60 mmHg Stage 4 5 min
-70 mmHg Stage 5 5 min
-80 mmHg Stage 6 5 min
-90 mmHg Stage 7 5 min
-100 mmHg Recovery 5 min

The LBNP protocol consists of a 5-minute rest period (0 mm Hg) followed by 5 min-

utes of chamber decompression of the lower body to -15, -30, -45, and -60 mm Hg and

additional increments of -10 mm Hg every 5 minutes until the onset of cardiovascular col-

lapse. Cardiovascular collapse is defined for LBNP as the stage at which the experiment

is terminated due to physical or physiological signs, or symptoms of distress. The collapse

state for exercise is defined as the stage of exercise resulting in the same heart rate at
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which LBNP was terminated for a particular subject recovery stage occurs after removing

the negative pressure from the subject. The exercise protocol consists of 5 minutes of

baseline followed by 5 minutes of exercise at gradually increasing workloads. All ECGs

were sampled at 500 Hz.

Figure 6 presents a detailed schematic of overall method. Two condition datasets,

LBNP and exercise, are used as input, and both traditional heart rate analysis and the

proposed analysis, SABWEF, are applied. Then statistical analysis between the SABWEF

and traditional analysis methods is performed.

Figure 6: Detailed schematic diagram of entire process - multiple tasks are performed on
ECG data.
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(a) (b)

Figure 7: ECG signal before pre-processing 7(a) and description of P wave, QRS, and T
wave 7(b).

6.5 Methods

Physiological data, such as electrocardiographs (ECG), are commonly used to record pa-

tient condition using a waveform which is suitable for monitoring. The ECG signal is an

electrical signal generated by the beating of the heart, and can be used as a non-invasive

diagnostic tool in examining heart function. The accurate recognition of ECG signals,

which is referred to as QRS detection, is an important task for diagnosis. Figure 7 dis-

plays a standard ECG with characteristic P, R, and T waves. The P wave represents

the spread of electrical activity over the atrium, and it usually has 0.08 to 0.12 sec (80

to 120 ms) duration. The T wave represents the recovery of the ventricles. Since the R

wave has the highest amplitude in the QRS complex, its accurate detection is important

in detecting the heart function. The interval between QRS complexes is called the R to R

interval and the variation of the intervals is referred to as HRV. Note that QRS complex

is the most significant waveform within the ECG signal to get HRV response information

and the HRV is generally extracted from the ECG recording by detecting RR intervals.



www.manaraa.com

61

In order to correctly assess the clinical meaning of the displayed information, it is

highly desirable that the waveforms accurately reflect the measured physiological data

regardless of the monitor type, pixel resolution, and the size of the window. The original

electrical signal sample used in the dataset is recorded at a high data rate of 500 frames per

second (also described as 500 Hz); an individual heartbeat consists of 400 to 700 samples

(corresponding to heart rates between 70 beats per minute and 50 beats per minute). This

is a significant volume of data to consider, and may therefore be re-sampled at a lower

frequency such as 250Hz or 125Hz, a process known as down-sampling [69].

During the tests, electrodes are used to record a subject’s ECG. The processing in-

cludes three parts; obtaining the raw ECG, ECG segmentation, and QRS detection. As

mentioned earlier, QRS detection is important to examining heart function. Figure 8 gives

an overview of the process of ECG analysis for this study. Each step will now be explained

in more detail.

Figure 8: Detailed schematic diagram of ECG analysis.
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6.5.1 ECG Segmentation

ECG segmentation is applied to the raw signal to distinguish the stages based on Table

13(b). Figure 9 presents an example of an LBNP signal.

Figure 9: Example LBNP signal - The x-axis represents time and the y-axes represent
LBNP values. The original ECG and LBNP signals must be scaled down for clear visual-
ization and to help differentiate the stages.

The graph in Figure 9 displays increasing sections representing transient states, and

flat horizontal lines representing steady states. Therefore, the ECG signal is segmented

based on the pressure levels of LBNP in Table 13(b). This study observes only the steady

state sections at each specific stage. A signal is collected for each stage.

The application of a pre-processing filter is necessary in order to attenuate signal noise.

To extract the main ECG features, three main pre-processing steps are performed: filter-

ing, QRS detection, and feature extraction.

6.5.2 Filtering

The purpose of filtering is to remove noise caused by a 60Hz power-line interface, as well as

to attenuate noise such as motion artifact and baseline drift, which is generally caused by

amplifiers [147]. This noise has a considerable influence on the quality of signal analysis;

therefore filtering must be done prior to processing the ECG signal. A diagram of the
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filtering process is presented at Figure 10.

Figure 10: The schematic diagram of filtering methods on ECG signal.

Both a notch filter and a band-pass filter are used. The notch filter is applied first, to

remove the 60 Hz power-line noise from the ECG. The notch filter can be seen in Figure 11

as the simultaneous application of high-pass and low-pass filters. This notch filter blocks

only a specific predefined frequency. This study uses a 60Hz notch filter, as this is the

frequency associated with the power noise [17].

Figure 11: Example of 60Hz power-line interfering noise before (upper) and after (bottom)
filtering. The arrow highlights the effect of the 60Hz power-line noise in the original signal.

6.5.3 QRS Detection

To extract heart rate variability based on RR intervals (see Figure 14), QRS detection

must be performed first. The QRS complex is the most distinguishable component in the

analysis because of its spiked nature and high amplitude. Since the P and T wave occur

before and after the QRS respectively, they are difficult to distinguish without knowledge of
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the QRS location [109, 74]. There are several techniques for detecting the QRS complex

using a variety of techniques and approaches. For example, QRS detection algorithms

based on signal derivatives are described in [6, 80, 71], algorithms based on a digital filter

are described in [109, 142], algorithms based on wavelet transform are discussed in [88, 77],

algorithms based on neural network are investigated in [162, 156], and algorithms based

on mathematical morphology are developed in [28, 149].

In order to detect the QRS complex, a modified version of the Tompkins algorithm is

formed and used. The Pan-Tompkins algorithm [109, 6] is the most commonly used real-

time QRS detection algorithm, which is based on an analysis of the slope, amplitude, and

the width of QRS complexes. Additional procedures such as histogram analysis, thresh-

olding process, and RR interval checking are added to the original Tompkins algorithm.

Figure 12 illustrates the detection process.

Figure 12: Detailed schematic diagram of QRS wave detection process.

First, the differentiation step is applied to remove the low-frequency components, such
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as P and T waves, retaining the high-frequency components associated with the high slopes

of the QRS complex. Next, the squaring operation makes the result positive and empha-

sizes large differences resulting from QRS complexes. In other words, it emphasizes the

higher frequency component nonlinearly and attenuates the lower frequency component.

This suppresses small differences caused by the P and T waves. Then, a moving average

window is used as a further smoothing filter, reducing the high-frequency noise. A moving

average is used over the squared signal to obtain the smooth pulse corresponding to the

QRS complex. The moving window size is defined based on half of the sampling rate in this

study. After this, a threshold is selected with the smoothed (averaged) signal to determine

the presence of the QRS complex in the waveform. However, ECG measurements can also

include noise introduced by muscle activity, which can cause high frequency noise, or from

other sources such as electromagnetic interface. These may impede detection of the true

RR interval. In order to overcome this, the result of the moving average signal is sub-

tracted from the original ECG signal. Additionally, histogram analysis is performed over

the moving average signals. The histogram accurately describes characteristics of the am-

plitude distribution across the signals. Thus, the histogram procedure removes unexpected

noise by removing small frequency parts of the signal. Then, an adaptive threshold value,

Thresh = mean(xi)+max(xi)∗α, where i = 1, · · · , n (n is the length of the signal) and xi

is the signal, is applied. After testing different values of α, it was observed that α=0.4 pro-

vides the best performance. To avoid False Positives (FP) due to high T-wave detection,

the acceptable heart beat range is set to between 30 bpm and 200 bpm, and the RR interval

is checked as well. Any single RR interval is compared using previous RR intervals with

sliding small window (=8). At this time, median value of previous RR intervals is used. If
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the RR interval value is greater than a certain range of interval, new RR interval is added.

Let I = {I1, I2, I3, · · · , In} is a set of RR interval at each stage and n is a length of RR inter-

val, l indicates an added new RR interval. For adding new RR interval, the following rules

are applied. If ω0 ≤ Ii ≤ ω1, i = 9, · · · , n =⇒ l = Ii. If ω1 ≤ Ii ≤ ω2, i = 9, · · · , n =⇒ l is

added and where l=median({Ii−8, Ii−7, · · · , Ii−1}) is added RR interval and Ii+1 = Ii − l.

If ω2 ≤ Ii ≤ ω3 =⇒ two l is added, where l=median({Ii−8, Ii−7, · · · , Ii−1}) is added RR

interval and Ii+2 = Ii − 2 × l, where ω0 = 0.89 × m, ω1 = 1.29 × m, ω2 = 2 × m, and

ω3 = 3 × m, where m is the median value of the previous eight RR intervals. Based on

this process, final heart rate variability is calculated.

Figure 13 shows the processing steps 1 through 3. The two circles in (a) show that a

trend movement problem caused an incorrect RR interval detection. Figure 13 (c) shows

how this algorithm handles the trend movement problem to correctly detects QRS. Figure

14 shows a portion of the RR detection result from Figure 13-(c).

Figure 13: Example of QRS detection steps - (a) original signal (b) result signal after
applying the moving average filter (c) result signal after applying the histogram procedure.

6.5.4 Feature Extraction

Once the HRV is extracted based on RR intervals, three methods are applied to extract

features. Figure 15 describes the feature extraction step. A total of fifty-seven features

are obtained using discrete wavelet transform (DWT), PSD, and FD methods. Feature
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Figure 14: Results of R peak detection and RR interval. R indicates R peak and RR
interval means time between R peak

extraction contains three steps: HRV normalization, signal processing analysis, and feature

analysis. For this step, HRV is considered as an input signal.

Figure 15: Detailed schematic diagram of feature extraction.

a) HRV normalization: Before calculating discrete wavelet transform (DWT), power spec-

tral density (PSD), and fractal dimension (FD) for the HRV, normalization is per-

formed because different subjects have different baselines. First the mean at the

baseline stage (HR first mean) is calculated and then all values at the rest of the

stages are divided by the HR first mean. These values, after division by the HR first

mean, are then used as input to further analysis such as the DWT. The HR first



www.manaraa.com

68

mean is calculated as follows:

hrm =
1
N

N∑
i=1

x
′
i (12)

where x
′
i is the HRV signal of the baseline and N is the length of HRV signal of the

baseline. HRV normalization is then performed as follows:

yi =
xi − hrm

hrm
, i = 1, · · · , N (13)

where yi is the new signal after normalization and xi is the original HRV signal of

each stage. Using the new normalized signal calculated, features are extracted.

b) Signal Processing Analysis: Three signal processing methods, wavelet transformation,

PSD and fractal dimension (FD) are described.

Wavelet Transformation Analysis: Wavelet transformation analysis (WT) acts

like a mathematical microscope which allows one to zoom in and discover the detailed

structure of a signal, or alternatively to reveal large scale structures by zooming out.

WT is a promising technique for time-frequency analysis, providing several features

not supported by Fourier transformation analysis [94, 141, 99, 111, 153].

The Fourier Transform (FT) uses sine and cosine base functions that have infinite

span and are globally uniform in time. However, the frequency of an ECG signal

changes over time; the QRS complex is a high frequency wave while the T wave

contains low frequency components. Therefore, it is critical to maintain the cor-

respondence of ECG frequency information to location in time [88]. However, FT

does not provide easy access to a signal’s time domain information, and is there-

fore unsuitable for preserving location information. FT is also limited to measuring
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non-stationary signals such as electrocardiogram (ECG) and blood pressure (BP)

[103].

Unlike FT, wavelet transformation can provide easy access to both frequency and

location information. This combination of time and frequency resolution makes

wavelet transform potentially very valuable so it is commonly used for many practical

applications in the field of biology and medicine [94, 4]. There are no absolute rules

for choosing a wavelet function, and therefore careful testing of different wavelets

and their efficiency is needed. Since the Daubecies wavelet family is similar in shape

to the QRS complex [37], discrete wavelet transform (DWT) with the Daubecies

wavelet, well suited to local analysis of fast time varying and non-regular signals, is

applied [146].

DWT not only captures the frequency content of the input, by examining it at

different scales, but also investigates the times at which these frequencies occur. It

was developed as an alternative to the Short Time Fourier Transform (STFT), to

overcome problems related to its frequency and time resolution properties [82, 153].

Figure 16 shows the detail processing steps of calculating DWT, where H is a high-

pass filter and G is a low-pass filter associated with H (For more details see [105]).

Power spectral density (PSD): Power spectral density (PSD) is described as the

distribution of energy with frequency. In other words, it shows at which frequencies

variations are strong and at which frequencies variations are weak. Mathematically:

Ω(w) =
∣∣∣∣ 1
2π

∫ ∞

−∞
e−iwtdt

∣∣∣∣
2

(14)
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Figure 16: Detailed schematic diagram of Discrete Wavelet Transformation with level 2.

where f(t) is the correlation function of the signal. The traditional way to analyze

HRV using PSD is to use an average power of high frequency, low frequency, very

low frequency, HF normalize, LF normalize, ratio of HF to LF, and ratio of LF to

HF [116, 86]. The PSD is calculated from RR intervals using linear interpolation,

then re-sampled at 5Hz, and a low-pass filter is applied with cut-off frequency of

0.5Hz. The Fourier transformation with Hanning window is employed to obtain the

power spectra. The spectral power is exhibited as the integrated area of HF, LF, and

VLF. The power between 0.15 Hz and 0.4Hz is considered as the power of the high

frequency (HF), between 0.04Hz and 0.15Hz as the low frequency (LF), and between

0.003Hz and 0.04Hz as very low frequency (VLF) range. Also, HF normalize and

LF normalize are measured by normalizing HF and LF respectively by the difference

between total average power and VLF:

HFm =
HF

(TAP − V LF )
(15)
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LFm =
LF

(TAP − V LF )
(16)

where TAP is the total average power of RR interval [45].

Fractal Dimension (FD): Fractal Dimension (FD) analysis is helpful in under-

standing complex biological signals such as ECG. Fractals have the characteristic

that each subset is similar to the whole set, and fractal dimension (FD) is a mea-

sure of this self-similarity [163, 76, 4, 136]. The Higuchi FD, as explained below, is

applied for this study because it is easy to use. This method first re-generates the

original signal as a finite time series based on a pre-defined window size. For this

study, first the window sizes of 8 and 15 are applied, based on the values reported in

the literature [4, 14, 132], and then the results of these two window sizes are com-

pared. For a given input signal x(1), x(2), · · · , x(N),the new finite time-series,xm
k , is

constructed as follows:

x(m), x(m + k), x(m + 2k), · · · , x(m + [
N − m

k
· k]), m = 1, 2, · · · , k (17)

where “[ ]” denotes the floor function, that is, the greatest integer that is less than

or equal to the value, and both k and m are integers representing the initial time

and interval. Then the length of the curve Lm(k) is defined as follows

Lm(k) =
1
k
{(

[N−m
k

]∑
i=1

|x(m + ik) − x(m + (i − 1) · k|) N − 1
[N−m

k ] · k} (18)

where N−1
[N−m

k
]·k represents the normalization factor for the curve length and N is the

total length of the signal. L(k) is defined as the length of the curve for the time series
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k and Lm(k) is denoted as the average value over k. Thus, if L(k)∞k−D, then the

curve has the dimension D. In other words, FD identifies the slope of the best fit-line

at the log-log plot for log(L(k)) versus log(k) [4, 14, 48, 70, 132]. Theoretically, the

FD for a signal should be between 1 and 2.

c) Feature Analysis: For DWT, mother wavelets Daubecies 4 (db4) and Daubecies 32

(db32) are applied and compared in this study. The standard deviation of the detail

coefficients for each level is calculated and used as one of the features of each stage.

The set of features using both db4 and db32 coefficients include:

• Standard deviation of coefficients at each level, i.e. sd1, sd2, sd3, sd4, and standard

deviation of approximate coefficients, i.e. sa

• Sum of square of coefficients at each level, i.e. sqd2
1, sqd

2
2, sqd

2
3, sqd

2
4, and standard

deviation of approximate coefficients, i.e. sqa2

• Median of the twenty highest coefficients at each level,

• Coefficient right before median at level 1 (d1 before), and coefficient right af-

ter median at level 1 (d1 after), and coefficient for middle (d1 middle) when

median is formed using the twenty highest detail coefficients,

Statistical Analysis

Analysis of variance (ANOVA) is performed using the statistical software tool SAS to

compare the HRV response over 4 stages (baseline to stage 4) of LBNP and exercise

subjects. Comparison of LBNP and exercise using wavelet analysis and traditional way

are performed respectively using ANOVA. Figure 17 illustrates the process of comparing
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the results for the LBNP and exercise datasets using the traditional and wavelet analysis

approaches.

Figure 17: Comparisons between LBNP and exercise conditions with traditional and
wavelet analysis.

6.6 Results

A total of forty-five features are extracted, thirty-six features for DWT (db 32) and DWT

(db4), seven for PSD, and two features for Higuchi FD.

The data consists of the cardiovascular response over 3 stages of LBNP and 4 stages of

exercise. In Study 1, ANOVA analysis is performed using the proposed approach (SAB-

WEF). In study 2, ANOVA analysis is performed using the traditional approach. In study

3, classification is performed to predict the current stage of the LBNP subjects using ma-

chine learning methods. The original sampling rate is 500Hz. A 125Hz down-sampling

rate is also applied to the ECG signal to examine HRV at low frequency.
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6.6.1 Comparison of LBNP and Exercise Using Wavelet Analysis

Based on repeated two-way factor ANOVA considering subject condition (LBNP/exercise)

and blood loss, it was found that the standard deviation of wavelet coefficients at level

1 (p-value=0.0348), sum of squared of wavelet coefficients at level 1 (p-value < .0001),

and median of wavelet coefficients at level 1 (p-value=0.0524) are significant to distinguish

between LBNP and exercise. However, the Higuchi FD (p-value=0.4377) is not significant.

The results of the repeated measure ANOVA tests are presented in Table 14. Each column

shows the p-value. The features based on db4 have very similar p-values as those of db32

and are significant.

Table 14: The summary of statistical comparison between LBNP and exercise with SAB-
WEF. Results for 500 Hz and 125 Hz sampling rates are presented here. P values inside
parentheses are for 125Hz and without parentheses are for 500 Hz. (SS stands for sum of
squared).

Stage
Level 1 SS level 1 level 1 median Entropy
500Hz 500Hz 500Hz 500Hz

(125Hz) (125Hz) (125Hz) (125Hz)

Baseline
0.2078 0.3473 0.4243 0.9448

(0.2775) (0.5148) (0.4050) (0.9637)

Stage 1
0.0214 0.0065 0.0112 0.1181

(0.0063) (0.0134) (0.1580) (0.2409)

Stage 2
0.0025 0.0001 0.0021 0.0133

(0.0085) (0.0007) (0.0039) (0.0233)

Stage 3
0.0235 0.0109 0.0175 <0.0001

(0.0338) (0.0162) (0.0385) (<0.0001)

Stage 4
0.0572 0.0209 0.0805 <0.0001

(0.0746) (0.0392) (0.0468) (<0.0001)

Based on this statistical analysis there is sufficient evidence to claim that SABWEF

accurately differentiates between LBNP and exercise subjects.

Figure 18 shows the average pattern and standard deviation of some of the above-

mentioned features for LBNP and exercise groups at different stages. These patterns

include the standard deviation of wavelet coefficients at level 1 using db4 and the median
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of wavelet coefficients at level 1 using db4. Pattern comparisons from baseline to 5 stages

of LBNP and exercise are shown in Figure 18.

6.6.2 Comparison of LBNP and Exercise with Traditional Approach

This study also compares the results of the traditional methods, which measures the

average power of HF, LF, VLF, ratio of LF to HF, and ratio of HF to LF at specific

frequency bands using PSD and Higuchi FD. As mentioned previously, the RR interval

is used to measure PSD with RR interpolation. Table 15 shows the comparison results

across the LBNP and exercise groups. Based on Table 15, the features extracted using the

traditional approach may not be sufficient to distinguish between the LBNP and exercise

subjects. Thus, the traditional method may not prove effective in differentiating LBNP

from exercise subjects.

Table 15: Statistical comparisons for HRV traditional approach. Results for 500 Hz and
125 Hz sampling rates are presented here. P values for 125 Hz are inside parenthesis.

Stage
HF LF VLF HF nm LF nm LF/HF HF/LF Higuchi

500Hz 500Hz 500Hz 500Hz 500Hz 500Hz 500Hz 500Hz
(125Hz) (125Hz) (125Hz) (125Hz) (125Hz) (125Hz) (125Hz) (125Hz)

Baseline
0.5897 0.1460 0.8536 0.6180 0.5561 0.5067 0.1657 0.0165

(0.9973) (0.2487) (0.6934) (0.7511) (0.4247) (0.4084) (0.1003) (0.2393)

Stage 1
0.9062 0.0656 0.1905 0.5825 0.7617 0.9436 0.4306 0.1401

(0.6057) (0.0714) (0.1693) (0.6365) (0.8003) (0.9296) (0.4082) (0.1580)

Stage 2
0.6735 0.8286 0.5750 0.8781 0.3133 0.7966 0.4045 0.1001

(0.7401) (0.6759) (0.3316) (0.7915) (0.5642) (0.7829) (0.3599) (0.3122)

Stage 3
0.3680 0.3911 0.6291 0.9361 0.1179 0.9152 0.4584 0.9841

(0.7152) (0.1466) (0.3358) (0.5476) (0.1378) (0.5619) (0.4832) (0.8495)

Stage 4
0.6054 0.1331 0.7488 0.3554 0.3504 0.1683 0.1635 0.1304

(0.7082) (0.325) (0.1199) (0.1900) (0.0616) (0.1639) (0.0965) (0.1953)

These results are supported by a recent study reporting that HF/LF measure is not

sufficient to distinguish across LBNP and exercise at 500Hz [123]. It was found that low

sampling rates, e.g. 125Hz, cannot distinguish between LBNP and exercise.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Pattern comparison using wavelet features: Standard deviation of wavelet
coefficients at level 1 using db4 pattern of LBNP and exercise 500 Hz 18(a) and 125 Hz
18(b) Median of wavelet coefficients at level 1 using db4 of LBNP and exercise at 500 Hz
18(c) and 125Hz 18(d) Entropy of wavelet coefficients at level 1 using db4 of LBNP and
exercise at 500 Hz 18(e) and 125Hz 18(f) .
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Figure 19 shows the patterns of traditional approach for LBNP and exercise groups at

different stages. The HF and ratio between HF and LF patterns are presented in here.

(a) (b)

(c) (d)

Figure 19: Pattern comparison using PSD features: HF using PSD of LBNP and exercise
500 Hz 19(a) and 125 Hz 19(b) HF/LF using PSD of LBNP and exercise at 500 Hz 19(c)
and 125Hz 19(d) .

6.6.3 Classification of Severity of Hemorrhage

This section presents the classification of hemorrhage severity using the LBNP human

model. In order to predict blood volume loss, it is divided it into 3 classes (mild:-15 to -30

mmHg; moderate: -45 to -60 mmHg; severe: over -60 mmHg). These levels correspond to

estimated blood losses of 400-550 cc, 500-1000 cc and greater than 1000 cc respectively.
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Two types of classification study are performed. In the first, only the ECG is used to

predict the severity of hemorrhage. In the second four signals, ECG, arterial blood pres-

sure (ABP), and impedance signals (IZT, and DZT), are used to predict the hemorrhage

severity using LBNP. Figure 20 shows the schematic diagram of the classification process

for study 1.

Figure 20: Schematic diagram of classification (Study 1).

The input ECG used for processing includes the baseline ECG as well as the ECG

signal of the stage to be classified. From each of the ECG signals, all features listed in

Section 6.3 are extracted. Since these features may have some level of correlation with

each other, principal component analysis (PCA) is used in order to eliminate potential

redundancy. The resulting PCA features are then used as input to the machine learning

algorithms (SVM, C4.5, and AdaBoost). Once the features are classified by the machine

learning algorithm, precision and recall of the algorithm are calculated to validate the

model and testing is performed using 10-fold cross validation.

Note that a subject that collapses at stage 7 contributes to the data in all classes, i.e.

this subject produces a set of input-output data for class 1, a set for class 2, and another

set for class 3. Thus, the number of samples produced for this study is much larger than

the number of subjects. A total of 219 samples are considered for classification into three
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classes using 10-fold cross validation. Specifically, class 1 has 92 subjects, class 2 has 88

subjects, and class 3 has 39 subjects.

Table 16 describes the classification results of study 1. Precision and recall are used

for assessing model performance. Precision is the probability of correctly predicting the

experiment result and recall (i.e. sensitivity) indicates the probability that the experiment

prediction is correct.

Table 16: Classification result using ECG signal only. TP indicates a True Positive

Method C4.5 AdaBoost SVM
Accuracy 74.4% 69% 77.2%
TP for class 1 (Mild) 82/92 91/92 89/92
TP for class 2 (Moderate) 58/88 45/88 62/88
TP for class 3 (Severe) 30/39 15/39 18/39

According to the comparison results, SVM has the higher prediction accuracy, 77.2%.

SVM’s average precision and recall (sensitivity) for all three classes are 71.4% and 79.3%,

respectively. However, C4.5 seems to have more reliable results as it correctly classifies

30 out of 39 cases in the severe class, which is an important factor for clinical decision

making. C4.5 also has an accuracy of 74.4% and the average precision and recall of 77.4%

and 76.1%, respectively.

In study 2, four signals, ECG, ABP, and impedance signals (IZT and DZT), are used to

predict the severity of hemorrhage into three class as described above. Figure 21 presents

the schematic diagram of the classification process using four signals for study 2. In this

study, ECG, ABP, and impedance (IZT and DZT) are considered as input signals in order

to predict the severity of blood loss. Unlike study 1, approximate coefficients with db4
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level 6 are used for this study. Let ci be an approximate coefficient of a signal, and ds
i

(where s indicates each level) is a detail coefficient of the signal. Then the features are

defined as follows:

λ1 =
1
N

N∑
i

(ci)2 (19)

λ2 = median(ci)2 (20)

λ3 = −λ1log2(
∑

d1 + d2 + d3 + d4 + d5 + d6 + λ1) (21)

where N is the length of coefficient and ds = 1
N

∑N
i=1 d2

i , where s = 1, · · · , 6. Thus, a

set of features, α = {λ1, λ2, λ3}, are extracted from each signal and used as features set.

Testing is done with 10-fold cross validation.

Figure 21: Schematic diagram of classification using four signals (study 2).

According to this study using four signals, SVM has the highest prediction accuracy,

83%. Based on this result, adding more information (signals) may provide better per-

formance than using a single signal. Also, the two studies of classification results show

that the features calculated via the wavelet method are useful in predicting severity of

hemorrhage. Verification that these features are applicable to the analysis of other signals

is tested in Chapter 7.
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6.7 Discussion

Diagnosis and assessment of hemorrhage based on low level physiologic signals such as

heart rate, including determining the severity of hemorrhage, remains a challenge. Heart

rate variability (HRV) contains significant information regarding cardiovascular activities,

and can provide additional information about autonomic control of the heart rate. This

can be used to evaluate the degree of hemorrhage shock, and assist in assessing the effects

of treatment before cardiovascular collapse occurs. Studying the effects of HRV may help

improve the quality of medical care in cases of hemorrhage shock. Several previous studies

have examined the use of HRV detection in reducing the mortality rate of patients in the

field. Rapid response and early detection are potential factors in improving the chance of

survival from severe blood loss. In a combat environment, the differentiation of sensitive

HRV response due to blood loss or physical activity is essential for determining appropriate

treatment.

Using an LBNP model of hemorrhage, it has been shown that wavelet analysis can

differentiate between hemorrhage and exercise based on heart rate variability. Although

preliminary studies indicate that FD analysis has a superior performance in distinguish-

ing normal and pathological subjects, this study has shown that it may not be sufficient

to differentiate physically active soldiers from a bleeding soldier in a combat situation.

Even though preliminary results indicate that the traditional approach, PSD, is a good

noninvasive tool for studying HRV, it cannot effectively differentiate between volume loss

and exercise subjects. Contrary to previous FD and PSD analysis results, wavelet anal-
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ysis may well be capable of informing users of the physical condition of the combatant.

Level 1, sum of squared level 1, median of level 1, entropy, and approximate coefficient

using wavelet coefficient are significantly more effective in distinguishing hemorrhage and

physical activity. In particular, the entropy measure can differentiate well between the

two conditions, as well as different stages of blood loss.

Another important issue in ECG analysis is noise. Notch and band pass filters are

well suited to remove the noise caused by power lines and subject movement. Subject

movement can significantly affect RR interval detection and generate incorrect results; it

must therefore be dealt with carefully.

Despite some limitations in the dataset, signal analysis based on wavelet-extracted

features (SABWEF) has been confirmed as useful in differentiating between hemorrhage

and physical activity. According to the result of study 2, information extracted from more

signals may provide an even better prediction of hemorrhage severity. Therefore, in future

continuation of this study, additional signals such as mean arterial pressure (MAP) and

respiratory rate will be added and analyzed to predict blood loss.

6.8 Conclusion

As mentioned previously, since rapid response and early detection of HS are important

to improving the likelihood of survival in the battlefield, a combat medic must be able

to differentiate between seriously injured soldiers with blood loss and those undergoing

physical activity in order to make accurate remote triage decisions. Therefore, the pro-

posed method, signal analysis based on wavelet-extracted features (SABWEF), to improve
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the quality of monitoring will provide the more accurate detection of the HS condition in

battlefield conditions. The development of accurate and fast methods for real-time elec-

trocardiogram (ECG) analysis is vital, and can be combined with automated monitoring

devices for soldiers and other high-risk individuals for early detection and evaluation of

HS. Our method is suitable for long-term ECG monitoring with low computational costs

and a low sampling rate. Thus, this research initiative represents an important step in

improving care for both civilians and combat soldiers.
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CHAPTER 7 Testing & Validation Using Gait in Aging

Dataset

This chapter presents the results for further test and validate the capabilities of the

signal analysis based on wavelet-extracted features (SABWEF) method. In Section 7.1,

the gait in aging dataset is described. Comparison results are presented in Section 7.2.

7.1 Description of Dataset

This gait in aging dataset was obtained from the Physio Bank [3]. Data was collected

from healthy subjects and from subjects with Parkinson’s disease by measuring the stride

interval signal, the time between successive heel strikes of the same foot. the dataset for

five subjects with each condition were used for this study. The signal was sampled at 300

Hz. The statistical results between our defined features (level 1 wavelet coefficient, sum

of square of level 1 coefficient, and median of level 1 coefficient) and traditional features

using PSD were compared using ANOVA.

7.2 Results

This section presents the comparing results of the wavelet features and the traditional

approach.

Table 17 presents the statistical comparison between Parkinson’s disease and healthy

subjects using wavelet features. A small p-value (<0.005) indicates that the wavelet fea-

84
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tures introduced can be used to distinguish the two types of subject.

Table 17: The summary of statistical comparison between Parkinson’s disease and healthy
subject with wavelet features.

Wavelet Level 1 SS level 1 level 1 median
Disease vs healthy 0.0444 0.0120 0.0233

Table 18 presents the difference between Parkinson’s disease and healthy subject when

using traditional features. The larger p-value (>0.005) indicates that the traditional ap-

proach with PSD cannot distinguish between the two subjects.

Table 18: Statistical comparisons for between Parkinson’s disease and healthy subjects
with traditional features.

Traditional Features HF LF VLF HF nm LF nm LF/HF HF/LF
Disease vs. Healthy 0.3401 0.3518 0.2796 0.1629 0.4228 0.0697 0.3456

As shown in Table 17 and Table 18, it was found that SABWEF is applicable in

differentiating healthy subjects and those with the Parkinson’s disease.

This chapter has shown that the wavelet-based method may be useful for other signals

as well as HRV analysis. Statistical analysis based on a small dataset shows that wavelet

features can identify between the gait of healthy and diseased subjects in a dataset of

aging patients. A larger dataset is needed for further testing.
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CHAPTER 8 Conclusion and Future Work

A computer assisted rule-based system is designed to help trauma physicians make

faster and more precise decisions. Due to the complex nature of medical data, feature

selection is crucial in increasing the prediction accuracy as well as transparency of the

decisions recommended by the system. A rule-based system using only significant features

may not only help trauma experts better predict outcomes such as the likelihood of sur-

vival, but also provide more transparent recommendations to experts. Also, by introducing

a novel set of wavelet-based features, the critical issue of extracting hidden information

from a highly complex signal which may not be identified by traditional method such as

Fourier Transform and fractal analysis is addressed. This chapter is organized as follows.

First, a summary of the work is described in Section 8.1. Then possible future directions

are presented in Section 8.2.

8.1 Summary

Among causes of death and permanent disability, traumatic injuries are the most prevalent

in both civilian and military settings. Also, trauma injuries, which are often associated

with bleeding, are the main risk factors in determining the chance of survival. Since

decisions in trauma care giving have to be made quickly, developing a system for computer-

assisted trauma decision making has gained interest amongst medical researchers.

However, developing this kind of system is not easy for the following reasons: patient

86



www.manaraa.com

87

information is complex in nature, the trauma unit is a stressful environment, the injury

types are very diverse, and the need for rapid decisions underlies every aspect of trauma

medicine. In addition, the most critical issue in decision making is the ability to integrate

all available complex clinical information and recommend a reasonable course of treatment.

Therefore, the main goal of the first part of this research is to design computer aided

trauma decision making based on rules which are transparent to experts, easy to un-

derstand, and have the capability of being used for diagnosis of new patients based on

faster and more accurate decisions. As a result, two complementary techniques, logistic

regression for finding significant variables and machine learning for rule extraction, are

used to provide accurate and understandable recommendations for physicians. Logistic

regression is useful for describing relationships between multiple independent variables

and a specific outcome. On the other hand, decision tree algorithms have the benefits of

being easy to understand and interpret, being capable of using categorical variables, and

having the ability to deal with missing values. The combination of statistical analysis and

decision tree algorithms, specifically CART and C4.5, and using only significant variables

extracted via logistic regression can create high quality rules that make sense to physicians.

Also, this combination approach was found to be useful for non-medical as well medical

decision-making.

The proposed computer-aided rule based system has significant benefits: 1) It provides

rule-based recommendations and enables optimal resource utilization. This may assist

physicians in providing the highest possible standard of care to patients with traumatic

injuries. 2) A previously recorded case that resembles that of a new patient can be identi-

fied in order to recommend a suitable treatment. The diagnosis of future patients may be
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improved by analyzing all possible rules associated with their symptoms. 3) The system

also may deliver potential guidance to the physicians based patient characteristics which

may improve efficiency of expenditures. 4) The system could be used as a teaching tool

to educate students about treatment of trauma patients.

In the second study, another algorithm is developed whose main application is an im-

portant problem in trauma care. Since hemorrhage shock (HS) is a consequence of serious

trauma injuries, diagnosis and assessment of HS, including determination of the sever-

ity of hemorrhage based on low level physiological signals such as heart rate, remains a

challenge. Heart rate variability (HRV) contains significant information regarding cardio-

vascular activities, and can provide additional information about abnormality of the heart

function. This can be used to evaluate the degree of the blood loss and assist in assessing

the effects of treatment before cardiovascular collapse occurs. Studying the effects of HRV

may help improve the quality of medical care in the case of hemorrhage shock, and several

previous studies have examined the use of early HRV change detection as a potential factor

in improving the chance of survival in the event of severe blood loss.

The differentiation of sensitive HRV response due to blood loss or physical activity

is essential in determining appropriate treatment and improving the survival rate in a

combat environment, given that most deaths in combat occur in the first four hours after

a soldier is injured. Preliminary studies indicate that fractal dimension (FD) and power

spectral density (PSD) analysis may not be sufficient to differentiate physically active

soldiers from bleeding soldiers. The second part of research proposes that analysis of

novel wavelet features that may be capable of making this distinction. Features such as

level 1 coefficients, sum of squared of coefficients at level 1, relative entropy of coefficients
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at level 1, and median of coefficients at level 1 are calculated using detail coefficient of

wavelet transformation. This approach was shown to be significantly more effective than

FD and PSD analysis in distinguishing hemorrhage from physical activity.

Since rapid response and early effective hemorrhage control has obvious benefits and

can improve the chance of survival more than any other measure, the novel wavelet fea-

tures proposed by this research will improve the quality of monitoring by providing more

accurate detection of the HS condition in civilians as well as provide valuable informa-

tion for making remote triage decisions on the battlefield. Note that the signal analysis

based on wavelet-extracted features (SABWEF) also may contribute to predicting early

detection of severe blood loss before it has occurred. Also, the proposed approach may be

useful for analyzing other complex signals, as shown in this research.

8.2 Future Work

The main future direction in developing reliable rule-based trauma decision making is

adding more information such as signal features and image features to extract more signif-

icant features from all integrated information. Other valuable signals such as respiratory

rate and transcranial Doppler (TCD), measured using ultrasonography, will help improve

the prediction accuracy of factors such as the volume of blood loss. More signal processing

features, extracted from ECG, such as P duration time, T duration time, ratio S wave to

T wave, and ratio P wave to R wave, will also help improve predictions. Such a prediction

system will provide invaluable information in estimating early risk factors before hemor-

rhage shock actually occurs. It is also likely that such analysis will prove to be useful for
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determining the states of other critical illness and injury including sepsis, cardiac arrest,

prediction of sudden death, the ability to defibrillate, and many others.
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Appendix A Reliable rules for survival prediction

Reliable rules are defined as those with accuracy greater than 85% and rules be-

tween 75% and 85%. Cg stands for coagulopathy; MI for myocardial infarction; ARDS

for Acute Respiratory Distress Syndrome; EDRTS for Emergency Department Revised

Trauma Score; ISS for Injury Severity Score; ID for Insulin-Dependent.

Rules Test Accuracy Method
(Cg=‘Yes’) and HEAD<2 and AGE<76.65 Then Alive 29/34(85.3%) CART
(Cg=‘No’) and (MI=‘No’) and AGE<61.70 and HEAD≤4 and (ARDS=‘No’)
Then Alive

334/375(89.1%) CART

(Cg=‘No’) and (MI=‘No’) and HEAD≥5 and AGE<22.35 Then Alive 55/64(85.9%) CART
ISS≥28 and (Cg=‘No’) and THORAX≤4 and 62.25≤AGE<69.00 and
EDRTS≥2.88 Then Alive

10/11(90.9%) CART

ISS≥23 and (Cg=‘No’)and THORAX≤4 and 69≤AGE<72.35 Then Alive 13/15(86.7%) CART
HEAD ≤ 2 and (MI = ‘No’) and (Cg = ‘No’) and AGE ≤ 62 Then Alive 182/206(88.3%) C4.5
(MI = ‘Yes’) and AGE ≤ 62 and EDRTS > 5.39 and ISS ≤ 25 Then Alive 19/20(95%) C4.5
THORAX > 3 and HEAD ≤ 4 and (ARDS = ‘No’) and AGE ≤ 62 Then Alive 126/148(85.1%) C4.5
THORAX ≤ 2 and EDRTS ≤ 0.87 and ISS > 38 Then Dead 12/13(92.3%) C4.5
(MI = ‘Yes’) and AGE > 82.6 Then Dead 16/18(88.9%) C4.5
(MI = ‘Yes’) and ISS > 30 Then Dead 45/50(90%) C4.5
HEAD > 4 and (MI = ‘Yes’) Then Dead 25/27(92.6%) C4.5
(Cg = ‘Yes’) and HEAD ≤ 4 and AGE > 78 Then Dead 12/14(85.7%) C4.5
(ID = ‘Yes’) and AGE > 78 and (MI = ‘Yes’) and HEAD ≤ 4 Then Dead 27/31(87.1%) C4.5
HEAD > 0 and HEAD ≤ 2 and (ID = ‘Yes’) and (ARDS = ‘No’) and AGE ≤
75.2 Then Alive

107/118(90.7%) C4.5

(ID = ‘Yes’) and (MI = ‘Yes’) and HEAD > 3 Then Dead 43/49(87.8%) C4.5
(MI = ‘Yes’) and (ID = ‘Yes’) and AGE > 78 Then Dead 32/37(86.5%) C4.5
HEAD > 4 and (MI = ‘Yes’) Then Dead 25/27(92.6%) C4.5
(MI = ‘Yes’) and ISS > 30 Then Dead 45/50(90%) C4.5
(MI = ‘Yes’) and AGE > 79.6 and ISS > 12 Then Dead 27/30(90%) C4.5
(Cg=‘Yes’) and HEAD ≤ 4 and AGE > 79.6 Then Dead 12/14(85.7%) C4.5
(ARDS = ‘No’) and (MI = ‘No’) and (Cg = ‘No’) and HEAD ≤ 4 and AGE ≤
62 Then Alive

335/376(89.1%) C4.5

(MI = ‘Yes’) and (ID = ‘Yes’) and AGE > 78 Then Dead 15/16(93.8%) C4.5
(MI = ‘Yes’) and HEAD ≤ 4 and ISS > 38 Then Dead 29/34(85.3%) C4.5
(MI = ‘Yes’) and AGE ≤ 61.6 and ISS > 27 Then Dead 26/30(86.7%) C4.5
HEAD ≤ 2 and (MI = ‘No’) and AGE ≤ 62 and ISS ≤ 38 Then Alive 235/270(87%) C4.5
THORAX > 0 and (ID = ‘Yes’) and ISS ≤ 30 Then Alive 13/14(92.9%) C4.5

Extracted supporting rules for survival prediction (75% - 85% accuracy).

Though these rules are not reliable enough for practical use; however, they can contain
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pattern information which may be of interest to physicians.

Rules Test Acc. Method
(Cg=‘Yes’) and 2.5≤HEAD<3.5 and EDRTS<6.07 and 35.65≤AGE<55.25 Then
Alive

10/12(83.3%) CART

(Cg=‘Yes’) and HEAD≥3 and EDRTS≥6.07 and THORAX<1 Then Alive 33/43 (76.7%) CART
(Cg=‘No’) and (MI=‘No’) and AGE<61.70 and (ARDS=‘Yes’) and HEAD<3
Then Alive

50/59(84.7%) CART

(Cg=‘No’)and (MI=‘No’) and ISS≥24 and 61.70≤AGE<68.90 and HEAD≤3
Then Dead

11/13(84.6%) CART

AGE<61.70 and HEAD≤4 and (MI=‘No’) Then Alive 625/793(78.8%) CART
HEAD≥5 and (Cg=‘No’) and AGE<22.85 Then Alive 60/73(82.2%) CART
HEAD≥5 and (Cg=‘No’) and EDRTS<5.02 and 22.85≤AGE<28 and ISS≥33
Then Dead

11/13(84.6%) CART

ISS≥23 and (ID=‘Yes’) and 61.70≤AGE<80.50 and (ARDS=‘No’) and
(Cg=‘Yes’) Then Dead

12/15(80.0%) CART

ISS≥23 and (ID=‘Yes’) and AGE≥80.50 Then Dead 42/51(82.4%) CART
AGE<61.70 and (Cg=‘Yes’) and HEAD≤3 and ISS<42 Then Alive 47/56(83.9%) CART
AGE<61.70 and (Cg=‘No’) and (MI=‘No’) Then Alive 559/706 (79.2%) CART
(MI=‘No’) and (Cg=‘Yes’) and HEAD≤3 and AGE<60.40 and ISS<42 Then
Alive

47/56(83.9%) CART

(MI=‘No’) and (Cg=‘No’) and ISS≤23 and EDRTS<6.07 Then Alive 578/728(79.4%) CART
AGE<62 and HEAD≤4 and ISS≤25 Then Alive 648/822(78.8%) CART
HEAD≥5 and (Cg=‘No’) and AGE<22.85 Then Alive 60/73(82.2%) CART
ISS≥23 and AGE≥80.50 Then Dead 45/55(81.8%) CART
AGE<61.70 and HEAD≤4 and (MI=‘No’) Then Alive 625/793(78.8%) CART
AGE<61.60 and (MI=‘No’) and ISS<42 and (Cg=‘Yes’) and HEAD≤3 Then
Alive

47/56(83.9%) CART

AGE<61.60 and HEAD≤4 and (MI=‘No’) and (Cg=‘No’) Then Alive 421/503(83.7%) CART
AGE≥61.60 and ISS≥23 and (Cg=‘Yes’) Then Dead 44/54(81.5%) CART
AGE<61.70 and HEAD≤4 and (ISS<27) Then Alive 646/820(78.8%) CART
HEAD≥5 and (Cg=‘No’) and 22.35≤AGE<25.85 and (MI=‘No’) and ISS≥30
Then Dead

10/13(76.9%) CART

ISS≥23 and 61.70≤AGE<74.10 and EDRTS<2.88 Then Dead 21/28(75.0%) CART
ISS≥23 and AGE≥74.10 Then Dead 92/119(77.3%) CART
(MI = ‘No’) and HEAD ≤ 4 and AGE ≤ 62 ISS ≤ 38 Then Alive 508/612(83%) C4.5
3<HEAD≤4 and (MI=‘No’) and (ID=‘Yes’) and (Cg=‘No’) and ISS≤59 Then
Alive

138/175(78.9%) C4.5

HEAD>1 and (MI =‘Yes’) and ISS>22 Then Dead 59/70(84.3%) C4.5
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Appendix B Reliable rules for exact outcome prediction

Reliable rules for exact outcome (Home/Rehab) are defined as those with accuracy

greater than 85%. FSBP represents initial blood pressure; ISS stands for Injury Severity

Score; EDGCSTOTAL is the total Glasgow Coma Score recorded in the emergency de-

partment; EDRTS is the Emergency Department Revised Trauma Score; ARDS stands

for Acute Respiratory Distress Syndrome.

Rules Test Acc. Method
HEAD≤3 and AGE<43.45 and FSBP<143.50 and ISS≤33 and EDRTS<0.87 and
THORAX≥2 Then Rehab

17/19(89.5%) CART

EDRTS<5.36 and HEAD≤3 and 33≤FSBP≤143 and ISS≥33.50 Then Rehab 69/79(87.3%) CART
HEAD≥4 and FSBP<171 and EDRTS<2.25 Then Rehab 125/135(92.6%) CART
2.25≤EDRTS<5.36 and HEAD≥4 and FSBP<171 and AGE≥10.90 Then Rehab 45/52(86.5%) CART
EDRTS≥5.36 and AGE<48.15 and THORAX≥1 and ISS≤21 Then Home 23/27(85.2%) CART
EDRTS≥5.36 and AGE≥48.15 and EDGCSTOTAL≥9 and ISS≥25 Then Rehab 61/65(93.8%) CART
EDRTS<5.02 and HEAD≤3 and 11.65≤AGE<24.40 and EDGCSTOTAL≤8 and
FSBP≥108 and THORAX≤4 Then Rehab

24/28(85.7%) CART

EDRTS<5.02 and HEAD≤3 and 26.05≤AGE<37.30 and EDGCSTOTAL≤8 and
FSBP≥108 Then Rehab

22/24(91.7%) CART

EDRTS<5.02 and HEAD≤3 and AGE≥43.30 Then Rehab 50/55(90.9%) CART
EDRTS<5.02 and HEAD≥4 Then Rehab 179/201(89.1%) CART
EDRTS≥5.02 and AGE<48.15 and THORAX≥1 and ISS≤21 Then Home 23/27(85.2%) CART
EDRTS≥5.02 and 24.25≤AGE<48.15 and THORAX≥1 and 22≤ISS<28 and
FSBP<146 Then Home

11/12(91.7%) CART

EDRTS≥5.02 and AGE<48.15 and THORAX≥1 and ISS≥22 and 74≤FSBP≤93
Then Rehab

10/11(90.9%) CART

EDRTS≥5.02 and AGE≥48.15 and EDGCSTOTAL≥9 and ISS≥24.50 Then Re-
hab

104/122(85.2%) CART

EDRTS<2.69 and 113≤FSBP≤170 and HEAD≤3 Then Rehab 49/57(86.0%) CART
EDRTS<2.69 and FSBP≤170 and HEAD≥4 Then Rehab 126/137(92.0%) CART
EDRTS≥2.69 and AGE<45.10 and THORAX≥1 and ISS≤21 and
EDGCSTOTAL≥7 Then Home

24/28(85.7%) CART

2.69≤EDRTS<5.02 and 22.80≤AGE<48.15 and THORAX≥1 and ISS≥22 and
(ARDS=‘No’) Then Rehab

25/28(89.3%) CART

EDRTS≥2.69 and 48.15≤AGE<84.30 and ISS≥25 Then Rehab 74/79(93.7%) CART
EDRTS<5.02 and 39.25≤AGE<51.35 and HEAD≤3 and FSBP≤116 and ISS≤33
Then Rehab

12/13(92.3%) CART

Extracted supporting rules for exact outcome prediction (75% - 85%accu-

racy).
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Though these rules are not reliable enough for practical use, they can contain pattern

information which may be of interest to physicians.

Rules Test Acc. Method
EDRTS≥5.36 and EDGCSTOTAL≥9 and ISS≤24 and THORAX≤3 and
AGE≥53.95 and FSBP≥93 Then Rehab

49/62(79.0%) CART

EDRTS≥7.12 and AGE<47.55 and THORAX≥1 and 28≤ISS<35 and
94≤FSBP≤135 Then Rehab

16/20(80.0%) CART

EDRTS≥2.69 and AGE<22.80 and THORAX≥1 and ISS≥22 and
123≤FSBP≤139 Then Rehab

11/13(84.6%) CART

EDRTS≥7.70 and 22.80≤AGE<45.90 and THORAX≥1 and ISS≥28 and
FSBP≥76 Then Rehab

31/39(79.5%) CART

5.02≤EDRTS<7.12 and AGE<45.90 and THORAX≥1 and 22≤ISS≤39 Then Re-
hab

9/12(75.0%) CART

EDRTS≥7.12 and AGE<48.15 and ISS≥25 and HEAD≤4 and THORAX≥1 and
69≤FSBP<98 Then Rehab

15/19(78.9%) CART

EDRTS≥2.69 and AGE<47.80 and ISS≤24 and HEAD≤2 and Then Home 43/56(76.8%) CART
2.69≤EDRTS<5.02 and 26.75≤AGE<47.80 and ISS≥25 and HEAD≥1 Then Re-
hab

28/34(82.4%) CART

EDRTS≥2.69 and ISS≤24 and THORAX≤3 and HEAD≥3 Then Rehab 151/182(83%) CART
EDRTS≥4.75 and AGE<48.15 and FSBP≥94 and THORAX≥1 and ISS≤21
Then Home

21/25(84.0%) CART

EDRTS≥2.69 and AGE≥48.15 and ISS≤25 and THORAX≤3 and FSBP≥80
Then Rehab

59/74(79.7%) CART

EDGCSTOTAL≥7 and 26.75≤AGE<43.00 and ISS≥25 and FSBP≥138 and
HEAD≥3 Then Rehab

12/16(75.0%) CART

EDGCSTOTAL≥6 and AGE≥50.60 and ISS≤25 and THORAX≤3 and HEAD≤4
and FSBP≥74 Then Rehab

61/79(77.2%) CART

(ID=‘Yes’) and AGE>44 and (ARDS=‘Yes’) Then Rehab 30/39(76.9%) C4.5
THORAX≤3 and ISS>18 Then Rehab 342/431(79.4%) C4.5
(Cg=‘No’) and 18.4<AGE≤59.7 and ISS>30 Then Rehab 162/199(81.4%) C4.5
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Appendix C Reliable rules for ICU days prediction

Reliable rules for ICU days are defined as those with accuracy greater than 85%. ED-

BP is Emergency Department Blood Pressure; ED-RESP is Emergency Department Res-

piratory Rate; ED-PULSE is Emergency Department Pulse Rate; ED-GCS is Emergency

Department Glasgow Coma Score.

Rules Test Acc. Method
(AIRWAY=‘Need’) and 115≤ ED-BP<156 and AGE≥47.05 and Then ICU stay
days≥3

14/15(93.3%) CART

(AIRWAY=‘Need’) and 115≤ ED-BP<156 and ED-RESP<18 and 4.35≤
AGE<14.5 Then ICU stay days≥3

12/12(100%) CART

(AIRWAY=‘No Need’) and ED-RESP≥21 and 45≤AGE<55.85 Then ICU stay
days≤2

10/11(90.1%) CART

(AIRWAY=‘Need’) and ED-BP<91 Then ICU stay days≥3 14/14(100%) CART
(AIRWAY=‘Need’) and 93.5≤ED-BP<156.5 and ED-PULSE≥60.5 and
AGE≥54.2 Then ICU stay days≥3

10/10(100%) CART

(AIRWAY=‘Need’) and 94≤ED-BP<156 and ED-PULSE≥61 and ED-RESP<19
and 18.45≤AGE<44.5 Then ICU stay days≥3

60/76(86.6%) CART

(AIRWAY=‘No Need’) and AGE<52.9 and ED-BP≥107 and ED-GCS≥11 Then
ICU stay days≤2

175/192(91.1%) CART

(AIRWAY=‘Need’) and ED-BP<150.5 and ED-RESP<19 and AGE≥4.9 and ED-
PULSE≥138 Then ICU stay days≥3

18/20(90%) CART

(AIRWAY=‘Need’) and ED-RESP<19 and ED-PULSE<138 and ED-BP<115
and 10.9≤AGE<47.3 Then ICU stay days≥3

31/33 (93.9%) CART

(AIRWAY=‘No Need’) and AGE<37.1 and ED-GCS≥11 and ED-BP≥125 Then
ICU stay days≤2

89/90(98.9%) CART

(AIRWAY=‘No Need’) and AGE<37.1 and ED-GCS≥11 and ED-BP<119 Then
ICU stay days≤2

39/44(88.6%) CART

(AIRWAY=‘No Need’) and AGE<37.1 and ED-GCS≥13 and 119≤ED-BP<125
and ED-PULSE≥90 Then ICU stay days≤2

21/22(95.5%) CART

(AIRWAY=‘Need’) and 146≤ED-BP<156 and AGE<22.5 Then ICU stay days≥3 11/12(91.2%) CART
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Rules Test Acc. Method
(AIRWAY=‘No Need’) and AGE<37.05 and ED-GCS≥9 Then ICU stay days≤2 157/172(91.3%) CART
(AIRWAY=‘No Need’) and 37.05≤AGE<46.9and ED-RESP<21 and ED-
PULSE<121 Then ICU stay days≤2

23/25(92%) CART

(AIRWAY=‘No Need’) and ED-RESP<21 and ED-PULSE<121 and AGE≥49.7
and ED-BP≥141 Then ICU stay days≤2

12/13(92.3%) CART

(AIRWAY=‘No Need’) and AGE<37.05 and ED-GCS<10 and 114≤ED-BP<142
Then ICU stay days≤2

11/12(91.7%) CART

(AIRWAY=‘Need’) and ED-BP<91.5 Then ICU stay days≥3 14/14(100%) CART
(AIRWAY=‘Need’) and 91≤ED-BP<156 and 95.5≤ED-PULSE<102.5 Then ICU
stay days≥3

15/17(88.2%) CART

(AIRWAY=‘No Need’) and AGE<52.9 and ED-BP≥99 and ED-GCS≥13 Then
ICU stay days≤2

177/196(90.3%) CART
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Appendix D Reliable rules for exact outcome prediction for

pelvic injury

Reliable rules for exact outcome for pelvic injury are defined as those with accuracy

greater than 85%.

Rules Accuracy Method

AGE<46 and EDGCS≤13 and ISS≥4 and (PRHFLU=IVF Unk Amount OR
PRHFLU≥ 2000) Then Rehab

11/12(91.7%) CART

EDGCS≥13 and (CHESTCT=‘Not Performed’) and ISS≤9 and AGE≤28 Then Home 31/31(100%) CART
36≤AGE≤46 and EDGCS≥14 and (CHESTCT=‘Not Performed’) and ISS≤9 Then
Home

16/18(88.9%) CART

21≤AGE≤46 and EDGCS≥14 and 30≤ISS≤39 Then rehab 10/11(90.9%) CART
52≤AGE≤68 and EDGCS≥15 and (PRHFLU=‘IVF Unk Amount’ or
PRHFLU=‘Not Performed’ or PRHFLU=‘500-2000’ or PRHFLU>2000 or
PRHFLU=‘IVF Attempted’) and ISS≥19 Then Rehab

14/15(93.3%) CART

EDGCS≤13 and ISS≤13 and AGE≤6 Then Home 11/12(91.7%) CART
EDGCS≤13 and ISS≥14 and AGE≤18 Then Rehab 9/10(90%) CART
18≤AGE≤47 and EDGCS≤13 and ISS≥14 and (PRHFLU=‘IVF Unk Amount’ or
PRHFLU>2000) Then Rehab

11/12(91.7%) CART

48≤AGE≤66 and ISS≥10 and EDGCS≤11 Then Rehab 18/19(94.7%) CART
AGE≤47 and EDGCS≥14 and ISS≤9 Then Home 75/88(85.2%) CART
AGE≤48 and EDGCS≤13 and ISS≥20 and (PRHFLU=‘IVF Unk Amount’ or
PRHFLU> 2000) Then Rehab

11/12(91.7%) CART

49≤AGE≤0 and ISS≥12 Then Rehab 14/16(87.5%) CART
10≤ISS≤18 and 48≤AGE≤68 and (PRHFLU=‘IVF Unk Amount’ or PRHFLU=‘500-
2000’ or PRHFLU>2000 or PRHFLU=‘IVF Attempted’) Then Rehab

12/14(85.7%) CART

AGE≤46 and EDGCS≥14 and ISS≤9 Then Home 75/87(86.2%) CART
10≤ISS≤24 and 47≤AGE≤52 and EDGCS≥9 and (PRHFLU=‘performed’) Then
Rehab

13/14(92.9%) CART

AGE<47.15 and EDGCS≤13 and (PRHFLU>2000) Then Rehab 10/11(90.9%) CART
EDGCS≤13 and (PRHFLU=‘is not > 2000’ and AGE<36.50 and ISS<20 Then Home 17/20(85%) CART
EDGCS≥14 and ISS≤9 and AGE≤28 Then Home 35/35(100%) CART
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Rules Accuracy Method

EDGCS≥14 and ISS≤9 and 29≤AGE≤35 and (PRHFLU=’500-2000’ OR
PRHFLU>2000 OR PRHFLU=‘Not Performed’) Then Home

13/15(86.7%) CART

24≤AGE≤47 and EDGCS≥14 and (CHESTCT=‘Not Performed’) and 26≤ISS≤29
Then Home

9/10(90%) CART

29≤AGE≤47 and EDGCS≥14 and ISS<9.50 and (PRHFLU=‘is not < 500’ and
PRHFLU=‘ is not > 2000’) Then Home

34/39(87.2%) CART

ISS≥10 and 48≤AGE≤68 and EDGCS≤11 Then Rehab 18/20(90%) C4.5
ISS≥10 and EDGCS≥12 and 48≤AGE≤50 Then Rehab 17/20(85%) C4.5
AGE<48 and EDGCS≥14 and ISS<7 Then Home 28/31(90.3%) C4.5
(PRHFLU = Not Performed) and 3<EDGCS≤14 and ISS>24 Then Rehab 18/19(94.7%) C4.5
(CHESTCT = ‘Not Performed’) and AGE≤47 and ISS≤10 Then Home 74/85(87%) C4.5
AGE≥43 and EDGCS≤11 Then Rehab 51/54(94.4%) C4.5
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Appendix E Detail non-medical dataset description

A detail description of two non-medical dataset, Census-income and university, is pre-

sented.

Census-Income Dataset Description:

Type of Variable Variables
Numerical (12) age, wage per hour, capital gross, capital losses, dividends from stocks, number persons

worked for employer, household, family member, weeks worked in year, family members
under 18, taxable income amount, year of starting working

Categorical (21) education, marital status, major occupation, gender,race, labor, member of a labor union,
reason for unemployment, full or part time employment status, citizenship, own business or
self employed, tax filer status, live in this house 1 year ago, veterans benefits status, industry,
enrolled in education institute, country of birth father, country of birth mother, country of
birth self, region of previous residence, state of previous residence

Class Yes/No

University Dataset Description:

Type of Variable Variables
Numerical (10) number of students, ratio male to female, ratio student to faculty, verbal SAT score, math

SAT score, expenses, financial aid, admittance, enrolled, quality of life,
Categorical (4) Control (private, state,city), academic emphasis, academics
Class Yes/No
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